JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Binding Hotspots of BAZ2B Bromodomain: Histone Interaction Revealed by Solution NMR Driven Docking.
Biochemistry
PUBLISHED: 10-15-2014
Show Abstract
Hide Abstract
Bromodomains are epigenetic reader domains, which have come under increasing scrutiny both from academic and pharmaceutical research groups. Effective targeting of the BAZ2B bromodomain by small molecule inhibitors has been recently reported, but no structural information is yet available on the interaction with its natural binding partner, acetylated histone H3K14ac. We have assigned the BAZ2B bromodomain and studied its interaction with H3K14ac acetylated peptides by NMR spectroscopy using both chemical shift perturbation (CSP) data and clean chemical exchange (CLEANEX-PM) NMR experiments. The latter was used to characterize water molecules known to play an important role in mediating interactions. Besides the anticipated Kac binding site, we consistently found the bromodomain BC loop as hotspots for the interaction. This information was used to create a data-driven model for the complex using HADDOCK. Our findings provide both structure and dynamics characterization that will be useful in the quest for potent and selective inhibitors to probe the function of the BAZ2B bromodomain.
Related JoVE Video
Pantothenic Acid Biosynthesis in the Parasite Toxoplasma gondii: a Target for Chemotherapy.
Antimicrob. Agents Chemother.
PUBLISHED: 07-21-2014
Show Abstract
Hide Abstract
Toxoplasma gondii is a major food pathogen and neglected parasitic infection that causes eye disease, birth defects, and fetal abortion and plays a role as an opportunistic infection in AIDS. In this study, we investigated pantothenic acid (vitamin B5) biosynthesis in T. gondii. Genes encoding the full repertoire of enzymes for pantothenate synthesis and subsequent metabolism to coenzyme A were identified and are expressed in T. gondii. A panel of inhibitors developed to target Mycobacterium tuberculosis pantothenate synthetase were tested and found to exhibit a range of values for inhibition of T. gondii growth. Two inhibitors exhibited lower effective concentrations than the currently used toxoplasmosis drug pyrimethamine. The inhibition was specific for the pantothenate pathway, as the effect of the pantothenate synthetase inhibitors was abrogated by supplementation with pantothenate. Hence, T. gondii encodes and expresses the enzymes for pantothenate synthesis, and this pathway is essential for parasite growth. These promising findings increase our understanding of growth and metabolism in this important parasite and highlight pantothenate synthetase as a new drug target.
Related JoVE Video
Evolution of enzyme catalysts caged in biomimetic gel-shell beads.
Nat Chem
PUBLISHED: 07-20-2014
Show Abstract
Hide Abstract
Natural evolution relies on the improvement of biological entities by rounds of diversification and selection. In the laboratory, directed evolution has emerged as a powerful tool for the development of new and improved biomolecules, but it is limited by the enormous workload and cost of screening sufficiently large combinatorial libraries. Here we describe the production of gel-shell beads (GSBs) with the help of a microfluidic device. These hydrogel beads are surrounded with a polyelectrolyte shell that encloses an enzyme, its encoding DNA and the fluorescent reaction product. Active clones in these man-made compartments can be identified readily by fluorescence-activated sorting at rates >10(7) GSBs per hour. We use this system to perform the directed evolution of a phosphotriesterase (a bioremediation catalyst) caged in GSBs and isolate a 20-fold faster mutant in less than one hour. We thus establish a practically undemanding method for ultrahigh-throughput screening that results in functional hybrid composites endowed with evolvable protein components.
Related JoVE Video
Design and Structural Analysis of Aromatic Inhibitors of Type?II Dehydroquinase from Mycobacterium tuberculosis.
ChemMedChem
PUBLISHED: 07-18-2014
Show Abstract
Hide Abstract
3-Dehydroquinase, the third enzyme in the shikimate pathway, is a potential target for drugs against tuberculosis. Whilst a number of potent inhibitors of the Mycobacterium tuberculosis enzyme based on a 3-dehydroquinate core have been identified, they generally show little or no in vivo activity, and were synthetically complex to prepare. This report describes studies to develop tractable and drug-like aromatic analogues of the most potent inhibitors. A range of carbon-carbon linked biaryl analogues were prepared to investigate the effect of hydrogen bond acceptor and donor patterns on inhibition. These exhibited inhibitory activity in the high-micromolar range. The addition of flexible linkers in the compounds led to the identification of more potent 3-nitrobenzylgallate- and 5-aminoisophthalate-based analogues.
Related JoVE Video
The use of chlorobenzene as a probe molecule in molecular dynamics simulations.
J Chem Inf Model
PUBLISHED: 06-18-2014
Show Abstract
Hide Abstract
We map ligand binding sites on protein surfaces in molecular dynamics simulations using chlorobenzene as a probe molecule. The method was validated on four proteins. Two types of affinity maps that identified halogen and hydrophobic binding sites on proteins were obtained. Our method could prove useful for the discovery and development of halogenated inhibitors.
Related JoVE Video
Supramolecular colloidosomes: fabrication, characterisation and triggered release of cargo.
Chem. Commun. (Camb.)
PUBLISHED: 05-23-2014
Show Abstract
Hide Abstract
We report a one-step method of assembling supramolecular colloidosomes at the interface of microfluidic droplets. The self-assembly process utilises a versatile CB[8] host-guest system to reversibly crosslink polystyrene nanoparticles via a polyacrylamide linker. These micrometre-sized hollow structures can be loaded with water-soluble cargo during formation, which can then undergo triggered release.
Related JoVE Video
Regioselective conversion of arenes to N-aryl-1,2,3-triazoles using C-H borylation.
Chemistry
PUBLISHED: 04-10-2014
Show Abstract
Hide Abstract
A one-pot protocol for the synthesis of N-aryl 1,2,3-triazoles from arenes by an iridium-catalyzed C?H borylation/copper catalyzed azidation/click sequence is described. 1?mol?% of Cu(OTf)2 was found to efficiently catalyze both the azidation and the click reaction. The applicability of this method is demonstrated by the late-stage chemoselective installation of 1,2,3-triazole moiety into unactivated molecules of pharmaceutical importance.
Related JoVE Video
Biofragments: an approach towards predicting protein function using biologically related fragments and its application to Mycobacterium tuberculosis CYP126.
Chembiochem
PUBLISHED: 03-29-2014
Show Abstract
Hide Abstract
We present a novel fragment-based approach that tackles some of the challenges for chemical biology of predicting protein function. The general approach, which we have termed biofragments, comprises two key stages. First, a biologically relevant fragment library (biofragment library) can be designed and constructed from known sets of substrate-like ligands for a protein class of interest. Second, the library can be screened for binding to a novel putative ligand-binding protein from the same or similar class, and the characterization of hits provides insight into the basis of ligand recognition, selectivity, and function at the substrate level. As a proof-of-concept, we applied the biofragments approach to the functionally uncharacterized Mycobacterium tuberculosis (Mtb) cytochrome P450 isoform, CYP126. This led to the development of a tailored CYP biofragment library with notable 3D characteristics and a significantly higher screening hit rate (14%) than standard drug-like fragment libraries screened previously against Mtb CYP121 and 125 (4% and 1%, respectively). Biofragment hits were identified that make both substrate-like type-I and inhibitor-like type-II interactions with CYP126. A chemical-fingerprint-based substrate model was built from the hits and used to search a virtual TB metabolome, which led to the discovery that CYP126 has a strong preference for the recognition of aromatics and substrate-like type-I binding of chlorophenol moieties within the active site near the heme. Future catalytic analyses will be focused on assessing CYP126 for potential substrate oxidative dehalogenation.
Related JoVE Video
Threonine 57 is required for the post-translational activation of Escherichia coli aspartate ?-decarboxylase.
Acta Crystallogr. D Biol. Crystallogr.
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Aspartate ?-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of ?-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation.
Related JoVE Video
Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum.
Nat Nanotechnol
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
There is a growing appreciation that mechanical signals can be as important as chemical and electrical signals in biology. To include such signals in a systems biology description for understanding pathobiology and developing therapies, quantitative experiments on how solution-phase and surface chemistry together produce biologically relevant mechanical signals are needed. Because of the appearance of drug-resistant hospital 'superbugs', there is currently great interest in the destruction of bacteria by bound drug-target complexes that stress bacterial cell membranes. Here, we use nanomechanical cantilevers as surface-stress sensors, together with equilibrium theory, to describe quantitatively the mechanical response of a surface receptor to different antibiotics in the presence of competing ligands in solution. The antibiotics examined are the standard, Food and Drug Administration-approved drug of last resort, vancomycin, and the yet-to-be approved oritavancin, which shows promise for controlling vancomycin-resistant infections. The work reveals variations among strong and weak competing ligands, such as proteins in human serum, that determine dosages in drug therapies. The findings further enhance our understanding of the biophysical mode of action of the antibiotics and will help develop better treatments, including choice of drugs as well as dosages, against pathogens.
Related JoVE Video
Targeting a c-MYC G-quadruplex DNA with a fragment library.
Chem. Commun. (Camb.)
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
We report here on the screening of a fragment library against a G-quadruplex element in the human c-MYC promoter. The ten fragment hits had significant concordance between a biophysical assay, in silico modelling and c-MYC expression inhibition, highlighting the feasibility of applying a fragment-based approach to the targeting of a quadruplex nucleic acid.
Related JoVE Video
Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically.
Chem. Biol.
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Thiamine pyrophosphate (TPP) riboswitches regulate essential genes in bacteria by changing conformation upon binding intracellular TPP. Previous studies using fragment-based approaches identified small molecule "fragments" that bind this gene-regulatory mRNA domain. Crystallographic studies now show that, despite having micromolar Kds, four different fragments bind the TPP riboswitch site-specifically, occupying the pocket that recognizes the aminopyrimidine of TPP. Unexpectedly, the unoccupied site that would recognize the pyrophosphate of TPP rearranges into a structure distinct from that of the cognate complex. This idiosyncratic fragment-induced conformation, also characterized by small-angle X-ray scattering and chemical probing, represents a possible mechanism for adventitious ligand discrimination by the riboswitch, and suggests that off-pathway conformations of RNAs can be targeted for drug development. Our structures, together with previous screening studies, demonstrate the feasibility of fragment-based drug discovery against RNA targets.
Related JoVE Video
Targeting Low-Druggability Bromodomains: Fragment Based Screening and Inhibitor Design against the BAZ2B Bromodomain.
J. Med. Chem.
PUBLISHED: 12-13-2013
Show Abstract
Hide Abstract
Bromodomains are epigenetic reader domains that have recently become popular targets. In contrast to BET bromodomains, which have proven druggable, bromodomains from other regions of the phylogenetic tree have shallower pockets. We describe successful targeting of the challenging BAZ2B bromodomain using biophysical fragment screening and structure-based optimization of high ligand-efficiency fragments into a novel series of low-micromolar inhibitors. Our results provide attractive leads for development of BAZ2B chemical probes and indicate the whole family may be tractable.
Related JoVE Video
A three-stage biophysical screening cascade for fragment-based drug discovery.
Nat Protoc
PUBLISHED: 10-24-2013
Show Abstract
Hide Abstract
This protocol describes the screening of a library of low-molecular-weight compounds (fragments) using a series of biophysical ligand-binding assays. Fragment-based drug discovery (FBDD) has emerged as a successful method to design high-affinity ligands for biomacromolecules of therapeutic interest. It involves detecting relatively weak interactions between the fragments and a target macromolecule using sensitive biophysical techniques. These weak binders provide a starting point for the development of inhibitors with submicromolar affinity. Here we describe an efficient fragment screening cascade that can identify binding fragments (hits) within weeks. It is divided into three stages: (i) preliminary screening using differential scanning fluorimetry (DSF), (ii) validation by NMR spectroscopy and (iii) characterization of binding fragments by isothermal titration calorimetry (ITC) and X-ray crystallography. Although this protocol is readily applicable in academic settings because of its emphasis on low cost and medium-throughput early-stage screening technologies, the core principle of orthogonal validation makes it robust enough to meet the quality standards of an industrial laboratory.
Related JoVE Video
MicroRNA-specific argonaute 2 protein inhibitors.
ACS Chem. Biol.
PUBLISHED: 08-13-2013
Show Abstract
Hide Abstract
As microRNA silencing processes are mediated by the protein Argonaute 2 and for target RNA binding only a short sequence at the microRNAs 5 end (seed region) is crucial, we report a novel inhibitor class: the microRNA-specific Argonaute 2 protein inhibitors that not only block this short recognition sequence but also bind to the proteins active site. We developed a model for rational drug design, enabling the identification of Argonaute 2 active site binders and their linkage with a peptide nucleic acid sequence (PNA), which addresses the microRNA of interest. The designed inhibitors targeting microRNA-122, a hepatitis C virus drug target, had an IC50 of 100 nM, 10-fold more active than the simple PNA sequence (IC50 of 1 ?M), giving evidence that the strategy has potential. Due to their lower molecular weight, these inhibitors may show better pharmacokinetic properties than reported oligonucleotide inhibitors, enabling them for potential therapeutic use.
Related JoVE Video
Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
In fragment-based drug discovery, the weak affinities exhibited by fragments pose significant challenges for screening. Biophysical techniques are used to address this challenge, but there is no clear consensus on which cascade of methods is best suited to identify fragment hits that ultimately translate into bound X-ray structures and provide bona fide starting points for synthesis. We have benchmarked an integrated biophysical approach for fragment screening and validation against Mycobacterium tuberculosis pantothenate synthetase. A primary screen of 1,250 fragments library was performed by thermal shift, followed by secondary screen using one-dimensional NMR spectroscopy (water ligand observed gradient spectroscopy and saturation transfer difference binding experiments) and ultimate hit validation by isothermal titration calorimetry and X-ray crystallography. Our multibiophysical approach identified three distinct binding sites for fragments and laid a solid foundation for successful structure-based elaboration into potent inhibitors.
Related JoVE Video
Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays.
ACS Nano
PUBLISHED: 07-08-2013
Show Abstract
Hide Abstract
We report a microfluidic droplet-based approach enabling the measurement of chemical reactions of individual enzyme molecules and its application to a single-molecule-counting immunoassay. A microfluidic device is used to generate and manipulate <10 fL droplets at rates of up to 1.3 × 10(6) per second, about 2 orders of magnitude faster than has previously been reported. The femtodroplets produced with this device can be used to encapsulate single biomolecular complexes tagged with a reporter enzyme; their small volume enables the fluorescent product of a single enzyme molecule to be detected within 10 min of on-chip incubation. Our prototype system is validated by detection of a biomarker for prostate cancer in buffer, down to a concentration of 46 fM. This work demonstrates a highly flexible and sensitive diagnostic platform that exploits extremely high-speed generation of monodisperse femtoliter droplets for the counting of individual analyte molecules.
Related JoVE Video
Nanoelectrospray ionization mass spectrometric study of Mycobacterium tuberculosis CYP121-ligand interactions.
Anal. Chem.
PUBLISHED: 05-29-2013
Show Abstract
Hide Abstract
Nondenaturing nanoelectrospray ionization mass spectrometry (nanoESI MS) of intact protein complexes was used to study CYP121, one of the 20 cytochrome P450s in Mycobacterium tuberculosis (Mtb) and an enzyme that is essential for bacterial viability. The results shed new light on both ligand-free and ligand-bound states of CYP121. Isolated unbound CYP121 is a predominantly dimeric protein, with a minor monomeric form present. High affinity azoles cause the dissociation of dimeric CYP121 into monomer, whereas weaker azole binders induce partial dimer dissociation or do not significantly destabilize the dimer. Complexes of CYP121 with azoles were poorly detected by nanoESI MS, indicating kinetically labile complexes that are easily prone to gas-phase dissociation. Unlike with the azoles, CYP121 forms a stable complex with its natural substrate cYY that does not undergo gas-phase dissociation. In addition, a series of potential ligands from fragment-based studies were used as a test for nanoESI MS work against CYP121. Most of these ligands formed stable complexes with CYP121, and their binding did not promote dimer dissociation. On the basis of binding to the monomer and/or CYP121 dimer it was possible to determine the relative order of their CYP121 binding affinities. The top nanoESI MS screening hit was confirmed by heme absorbance shift assay to have a Kd of 40 ?M.
Related JoVE Video
Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system.
Int J Mol Sci
PUBLISHED: 04-19-2013
Show Abstract
Hide Abstract
In this paper, we investigated the intra-species bacterial quorum sensing at the single cell level using a double droplet trapping system. Escherichia coli transformed to express the quorum sensing receptor protein, LasR, were encapsulated in microdroplets that were positioned adjacent to microdroplets containing the autoinducer, N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Functional activation of the LasR protein by diffusion of the OdDHL across the droplet interface was measured by monitoring the expression of green fluorescent protein (GFP) from a LasR-dependent promoter. A threshold concentration of OdDHL was found to induce production of quorum-sensing associated GFP by E. coli. Additionally, we demonstrated that LasR-dependent activation of GFP expression was also initiated when the adjacent droplets contained single E. coli transformed with the OdDHL synthase gene, LasI, representing a simple quorum sensing circuit between two droplets.
Related JoVE Video
Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry.
Anal. Chem.
PUBLISHED: 03-27-2013
Show Abstract
Hide Abstract
Droplet-based fluidics is emerging as a powerful platform for single cell analysis, directed evolution of enzymes, and high throughput screening studies. Due to the small amounts of compound compartmentalized in each droplet, detection has been primarily by fluorescence. To extend the range of experiments that can be carried out in droplets, we have developed the use of electrospray ionization mass spectrometry (ESI-MS) to measure femtomole quantities of proteins in individual pico- to nanoliter droplets. Surfactant-stabilized droplets containing analyte were produced in a flow-focusing droplet generation microfluidic device using fluorocarbon oil as the continuous phase. The droplets were collected off-chip for storage and reinjected into microfluidic devices prior to spraying the emulsion into an ESI mass spectrometer. Crucially, high quality mass spectra of individual droplets were obtained from emulsions containing a mixture of droplets at >150 per minute, opening up new routes to high throughput screening studies.
Related JoVE Video
Using a fragment-based approach to target protein-protein interactions.
Chembiochem
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
The ability to identify inhibitors of protein-protein interactions represents a major challenge in modern drug discovery and in the development of tools for chemical biology. In recent years, fragment-based approaches have emerged as a new methodology in drug discovery; however, few examples of small molecules that are active against chemotherapeutic targets have been published. Herein, we describe the fragment-based approach of targeting the interaction between the tumour suppressor BRCA2 and the recombination enzyme RAD51; it makes use of a screening pipeline of biophysical techniques that we expect to be more generally applicable to similar targets. Disruption of this interaction in vivo is hypothesised to give rise to cellular hypersensitivity to radiation and genotoxic drugs. We have used protein engineering to create a monomeric form of RAD51 by humanising a thermostable archaeal orthologue, RadA, and used this protein for fragment screening. The initial fragment hits were thoroughly validated biophysically by isothermal titration calorimetry (ITC) and NMR techniques and observed by X-ray crystallography to bind in a shallow surface pocket that is occupied in the native complex by the side chain of a phenylalanine from the conserved FxxA interaction motif found in BRCA2. This represents the first report of fragments or any small molecule binding at this protein-protein interaction site.
Related JoVE Video
Single molecule fluorescence under conditions of fast flow.
Anal. Chem.
PUBLISHED: 12-06-2011
Show Abstract
Hide Abstract
We have experimentally determined the optimal flow velocities to characterize or count single molecules by using a simple microfluidic device to perform two-color coincidence detection (TCCD) and single pair Förster resonance energy transfer (spFRET) using confocal fluorescence spectroscopy on molecules traveling at speeds of up to 10 cm s(-1). We show that flowing single fluorophores at ?0.5 cm s(-1) reduces the photophysical processes competing with fluorescence, enabling the use of high excitation irradiances to partially compensate for the short residence time within the confocal volume (10-200 ?s). Under these conditions, the data acquisition rate can be increased by a maximum of 38-fold using TCCD at 5 cm s(-1) or 18-fold using spFRET at 2 cm s(-1), when compared with diffusion. While structural characterization requires more photons to be collected per event and so necessitates the use of slower speeds (2 cm s(-1) for TCCD and 1 cm s(-1) for spFRET), a considerable enhancement in the event rate could still be obtained (33-fold for TCCD and 16-fold for spFRET). Using flow under optimized conditions, analytes could be rapidly quantified over a dynamic range of up to 4 orders of magnitude by direct molecule counting; a 50 fM dual-labeled model sample can be detected with 99.5% statistical confidence in around 8 s using TCCD and a flow velocity of 5 cm s(-1).
Related JoVE Video
Quantitative tracking of the growth of individual algal cells in microdroplet compartments.
Integr Biol (Camb)
PUBLISHED: 08-24-2011
Show Abstract
Hide Abstract
In this paper we introduce a simple droplet-based microfluidic system consisting of two separate devices to encapsulate and culture microalgae, in contrast to cultivation in bulk liquid medium. This microdroplet technology has been used to monitor the growth of individual microalgal cells in a constant environment for extended periods of time. Single cells from three species of green microalgae, (two freshwater species Chlamydomonas reinhardtii and Chlorella vulgaris, and one saline species Dunaliella tertiolecta), were encapsulated and incubated in microdroplet compartments of diameter of ?80 ?m, and their growth analysed over 10 days. In all cases, the doubling time of microalgae grown in microdroplets was similar to growth in bulk. The growth of C. reinhardtii in microdroplets of varying diameters and with different initial cell numbers per droplet was investigated, as well as the effect of varying medium conditions such as pH and nitrogen concentration. This methodology offers the opportunity to study characteristics over time of individual cells and colonies, as well as to screen large numbers of them.
Related JoVE Video
Rv2607 from Mycobacterium tuberculosis is a pyridoxine 5-phosphate oxidase with unusual substrate specificity.
PLoS ONE
PUBLISHED: 07-12-2011
Show Abstract
Hide Abstract
Despite intensive effort, the majority of the annotated Mycobacterium tuberculosis genome consists of genes encoding proteins of unknown or poorly understood function. For example, there are seven conserved hypothetical proteins annotated as homologs of pyridoxine 5-phosphate oxidase (PNPOx), an enzyme that oxidizes pyridoxine 5-phosphate (PNP) or pyridoxamine 5-phosphate (PMP) to form pyridoxal 5-phosphate (PLP). We have characterized the function of Rv2607 from Mycobacterium tuberculosis H37Rv and shown that it encodes a PNPOx that oxidizes PNP to PLP. The k(cat) and K(M) for this reaction were 0.01 s(-1) and 360 µM, respectively. Unlike many PNPOx enzymes, Rv2607 does not recognize PMP as a substrate.
Related JoVE Video
Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches.
Biochem. Soc. Trans.
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
Riboswitches are regions of mRNA to which a metabolite binds in the absence of proteins, resoulting in alteration of transcription, translation or splicing. The most widespread forms of riboswitches are those responsive to TPP (thiamine pyrophosphate) the active form of vitamin B1, thiamine. TPP-riboswitches have been found in all bacterial genomes examined, and are the only ones found in eukaryotes. In each case, the riboswitch appears to regulate the expression of a gene involved in synthesis or uptake of the vitamin. Riboswitches offer an attractive target for chemical intervention, and identification of novel ligands would allow a detailed study on structure-activity relationships, as well as potential leads for the development of antimicrobial compounds. To this end, we have developed a medium-throughput methodology for screening libraries of small molecules using biophysical methods.
Related JoVE Video
Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis.
Biochem. J.
PUBLISHED: 03-18-2011
Show Abstract
Hide Abstract
The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analogue of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form ?-stacking interactions with the catalytic Tyr24 have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19-24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.
Related JoVE Video
Controlling the contents of microdroplets by exploiting the permeability of PDMS.
Lab Chip
PUBLISHED: 02-07-2011
Show Abstract
Hide Abstract
A microfluidic device capable of exploiting the permeability of small molecules through polydimethylsiloxane (PDMS) has been fabricated in order to control the contents of microdroplets stored in storage wells. We demonstrate that protein precipitation and crystallization can be triggered by delivery of ethanol from a reservoir channel, thus controlling the protein solubility in microdroplets. Likewise quorum sensing in bacteria was triggered by delivery of the auto-inducer N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL) through the PDMS membrane of the device.
Related JoVE Video
Monitoring a reaction at submillisecond resolution in picoliter volumes.
Anal. Chem.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Well-established rapid mixing techniques such as stopped-flow have been used to push the dead time for kinetic experiments down to a few milliseconds. However, very fast reactions are difficult to resolve below this limit. We now outline an approach that provides access to ultrafast kinetics but does not rely on active mixing at all. Here, the reagents are compartmentalized into water-in-oil emulsion microdroplets (diameter ?50 ?m) that are statically arrayed in pairs, resting side-by-side in a well feature of a poly(dimethylsiloxane) (PDMS) device. A reaction between the contents of two droplets arrayed in such a holding trap is initiated by droplet fusion that is brought about by electrocoalescence and known to occur on a time scale of about 100 ?s. A reaction between the reactants (Fe(3+) and SCN(-)) is monitored by image analysis measuring the product formation in the newly merged drop in both space and time, by use of a fast camera. A comparison of the concentration field of the reaction product with the output of a reaction-diffusion system of equations yields a rate constant k ? 3 × 10(4) M(-3)·s(-1). Since reaction and diffusion are formally included in the mathematical model, measurements can proceed immediately after the drop fusion, removing the need to allow time for mixing. This approach is different from existing methodologies, for example, experiments in a conventional stopped-flow apparatus but also electrofusion of moving droplets where contents are mixed by chaotic advection before a reaction is monitored. Our analysis makes kinetics accessible that are several times faster than techniques that have to allow time for mixing.
Related JoVE Video
A chelating dendritic ligand capped quantum dot: preparation, surface passivation, bioconjugation and specific DNA detection.
Nanoscale
PUBLISHED: 11-03-2010
Show Abstract
Hide Abstract
Herein we report the synthesis of a new chelating dendritic ligand (CDL) and its use in the preparation a compact, stable and water-soluble quantum dot (QD), and further development of specific DNA sensor. The CDL, which contains a chelative dihydrolipoic acid moiety for strong QD surface anchoring and four dendritic carboxylic acid groups, provides a stable, compact and entangled hydrophilic coating around the QD that significantly increases the stability of the resulting water-soluble QD. A CDL-capped CdSe/ZnS core/shell QD (CDL-QD) has stronger fluorescence than that capped by a monodendate single-chain thiol, 3-mercapto-propionic acid (MPA-QD). In addition, the fluorescence of the CDL-QD can be enhanced by 2.5-fold by treatments with Zn2+ or S2- ions, presumably due to effective passivation of the surface defects. This level of fluorescence enhancement obtained for the CDL-QD is much greater than that for the MPA-QD. Further, by coupling a short single-stranded DNA target to the QD via the CDL carboxylic acid group, a functional QD-DNA conjugate that can resist non-specific adsorption and hybridize quickly to its complementary DNA probe has been obtained. This functional QD-DNA conjugate is suitable for specific quantification of short, labelled complementary probes at the low DNA probe:QD copy numbers via a QD-sensitised dye fluorescence resonance energy transfer (FRET) response with 500 pM sensitivity on a conventional fluorimeter.
Related JoVE Video
Isothermal DNA amplification using the T4 replisome: circular nicking endonuclease-dependent amplification and primase-based whole-genome amplification.
Nucleic Acids Res.
PUBLISHED: 10-04-2010
Show Abstract
Hide Abstract
In vitro reconstitution of the bacteriophage T4 replication machinery provides a novel system for fast and processive isothermal DNA amplification. We have characterized this system in two formats: (i) in circular nicking endonuclease-dependent amplification (cNDA), the T4 replisome is supplemented with a nicking endonuclease (Nb.BbvCI) and a reverse primer to generate a well-defined uniform double-stranded linear product and to achieve up to 1100-fold linear amplification of a plasmid in 1 h. (ii) The T4 replisome with its primase (gp61) can also support priming and exponential amplification of genomic DNA in primase-based whole-genome amplification (T4 pWGA). Low amplification biases between 4.8 and 9.8 among eight loci for 0.3-10 ng template DNA suggest that this method is indeed suitable for uniform whole-genome amplification. Finally, the utility of the T4 replisome for isothermal DNA amplification is demonstrated in various applications, including incorporation of functional tags for DNA labeling and immobilization; template generation for in vitro transcription/translation and sequencing; and colony screening and DNA quantification.
Related JoVE Video
Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution.
Electrophoresis
PUBLISHED: 08-31-2010
Show Abstract
Hide Abstract
Fluorongenic reagents based on 4-methylumbelliferone (4-MU) have been widely used for the detection of phosphatase, sulfatase, esterase, lipase and glycosidase activities in conventionally formatted enzyme assay systems. However, the sensitivity of assays based on these substrates is also potentially very useful in the microdroplet formats now being developed for high throughput in vitro evolution experiments. In this article, we report the investigation of diffusion of 4-MU as a model dye from water-in-oil droplets and the internal aqueous phase of water-in-oil-in-water droplets in microfluidics. The effect of BSA in the aqueous phase on the diffusion of 4-MU is also discussed. Based on these results, we provided here proof-of-concept of the reaction of the enzyme OpdA with the substrate coumaphos in water-in-oil-in-water droplets. In this double-emulsion system, the reaction of OpdA and coumaphos was achieved by allowing coumaphos to diffuse from the continuous aqueous phase across the oil phase into the internal aqueous droplets.
Related JoVE Video
Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 06-24-2010
Show Abstract
Hide Abstract
Microdroplets in microfluidics offer a great number of opportunities in chemical and biological research. They provide a compartment in which species or reactions can be isolated, they are monodisperse and therefore suitable for quantitative studies, they offer the possibility to work with extremely small volumes, single cells, or single molecules, and are suitable for high-throughput experiments. The aim of this Review is to show the importance of these features in enabling new experiments in biology and chemistry. The recent advances in device fabrication are highlighted as are the remaining technological challenges. Examples are presented to show how compartmentalization, monodispersity, single-molecule sensitivity, and high throughput have been exploited in experiments that would have been extremely difficult outside the microfluidics platform.
Related JoVE Video
Inhibition of chorismate-utilising enzymes by 2-amino-4-carboxypyridine and 4-carboxypyridone and 5-carboxypyridone analogues.
Org. Biomol. Chem.
PUBLISHED: 06-09-2010
Show Abstract
Hide Abstract
Several 2-amino-4-carboxypyridine, 4- and 5-carboxypyridone-based compounds were prepared and tested against three members of the chorismate-utilising enzyme family, anthranilate synthase, isochorismate synthase and salicylate synthase. Most compounds exhibited low micromolar inhibition of these three enzymes. The most potent inhibitor was a 4-carboxypyridone analogue bearing a lactate side chain on the pyridyl nitrogen which exhibited inhibition constants of 5, 91 and 54 muM against anthranilate synthase, isochorismate synthase and salicylate synthase respectively.
Related JoVE Video
Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions.
Lab Chip
PUBLISHED: 05-05-2010
Show Abstract
Hide Abstract
Here we present a novel surface modification method based on the sequential layer-by-layer deposition of polyelectrolytes yielding hydrophilic microchannels in PDMS-based microfluidic devices. The coatings are long-term stable and allow for the generation of monodisperse oil-in-water microdroplets even several months after the channel surface treatment. Due to the robustness of the polyelectrolyte multilayers ultra-high flow rates can be applied, making high-throughput droplet formation in the jetting mode possible. Furthermore, we successfully used our method to selectively modify the surface properties in certain areas of assembled microchannels. The resulting partially hydrophilic, partially hydrophobic microfluidic devices allow for the production of monodisperse water-in-oil-in-water double emulsions.
Related JoVE Video
Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase.
J. Am. Chem. Soc.
PUBLISHED: 03-18-2010
Show Abstract
Hide Abstract
Fragment-based methods are a new and emerging approach for the discovery of protein binders that are potential new therapeutic agents. Several ways of utilizing structural information to guide the inhibitor assembly have been explored to date. One of the approaches, application of interligand Overhauser effect (ILOE) observations, is of particular interest, as it does not require the availability of a three-dimensional protein structure and is an NMR-based method that can be applied to targets that cannot be observed directly because of their size. Fragments, as small and often hydrophobic molecules, suffer from problems including compound aggregation in an aqueous environment and nonspecific binding contributions, especially when screened at higher concentrations suitable for ILOE observations. Here we report how this problem can be overcome by applying a step-by-step iterative procedure that includes the application of optimized probe molecules with known binding modes to elucidate the unknown binding modes of fragments. An enzyme substrate with well-characterized binding was used as a starting point, and the relative binding modes of modified fragments derived from ILOE observations were used to guide the fragment linking, leading to a potent inhibitor of our model system, Mycobacterium tuberculosis pantothenate synthetase, a potential drug target. We have supported our NMR data with crystal structures, thus establishing the guidelines for optimizing the ILOE observations. This model study should expand the application of the technique in drug discovery.
Related JoVE Video
A fragment-based approach to identifying ligands for riboswitches.
ACS Chem. Biol.
PUBLISHED: 02-18-2010
Show Abstract
Hide Abstract
Riboswitches are regions of mRNA that directly bind metabolites, leading to alteration of gene expression. We have developed fragment-based methods to screen for compounds that bind the Escherichia coli thiM riboswitch. Using complementary biophysical techniques we have identified several ligands with K(D) <100 microM. From these there is the potential to develop potent and selective modulators of riboswitch function.
Related JoVE Video
A double droplet trap system for studying mass transport across a droplet-droplet interface.
Lab Chip
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
Here we present the design, fabrication and operation of a microfluidic device to trap droplets in a large array of droplet pairs in a controlled manner with the aim of studying the transport of small molecules across the resultant surfactant bilayers formed between the droplet pairs.
Related JoVE Video
Drugging challenging targets using fragment-based approaches.
Curr Opin Chem Biol
PUBLISHED: 02-08-2010
Show Abstract
Hide Abstract
Fragment-based approaches have now become firmly established in the drug discovery armoury. After notable early successes against protein kinases, the versatility and power of fragment-based approaches are increasingly being demonstrated on more diverse and difficult protein targets. This review highlights seven examples including targeting protein-protein interactions, a RNA polymerase and a DNA-binding protein. It shows how fragment-based approaches using small libraries have been successful when large HTS screens have failed. It also highlights the range of biophysical approaches being used and the interplay between experimental and in silico screens. The examples all show the iterative way in which potency is built up by synthetic elaboration of the initial fragment hits.
Related JoVE Video
Fluorosurfactants for microdroplets: interfacial tension analysis.
J Colloid Interface Sci
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
Quantitative analysis of a number of potential fluorous surfactants, prepared with a view to stabilisation of microdroplets in microfluidic systems is presented. The surfactants tested comprised compounds with both perfluoropolyether (PFPE) and perfluoroalkyl (PFA) tails, along with three classes of hydrophilic head group, including crown ethers and hexaethylene gylcol. Surfactants were tested for activity using the pendant drop technique. Six compounds proved highly effective and efficient surfactants, with gamma(CMC)<10 mN/m and CMCs in the sub-millimolar range. These six compounds stabilised aqueous microdroplets in fluorous oils within poly(dimethylsiloxane) (PDMS) microdevices to a greater degree than commonly used pseudosurfactants such as perfluorooctanol.
Related JoVE Video
Tri-partite complex for axonal transport drug delivery achieves pharmacological effect.
BMC Neurosci
PUBLISHED: 01-20-2010
Show Abstract
Hide Abstract
Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System) neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior.
Related JoVE Video
Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by force spectroscopy.
Org. Biomol. Chem.
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
Functionalised thiols presenting peptides found in the peptidoglycan of vancomycin-sensitive and -resistant bacteria were synthesised and used to form self-assembled monolayers (SAMs) on gold surfaces. This model bacterial cell-wall surface mimic was used to study binding interactions with vancomycin. Force spectroscopy, using the atomic force microscope (AFM), was used to investigate the specific rupture of interfacial vancomycin dimer complexes formed between pairs of vancomycin molecules bound to peptide-coated AFM probe and substrate surfaces. Clear adhesive contacts were observed between the vancomycin-sensitive peptide surfaces when vancomycin was present in solution, and the adhesion force demonstrated a clear dependence on antibiotic concentration.
Related JoVE Video
Crystal structure of Escherichia coli enterobactin-specific isochorismate synthase (EntC) bound to its reaction product isochorismate: implications for the enzyme mechanism and differential activity of chorismate-utilizing enzymes.
J. Mol. Biol.
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
EntC, one of two isochorismate synthases in Escherichia coli, is specific to the biosynthesis of the siderophore enterobactin. Here, we report the crystal structure of EntC in complex with isochorismate and Mg(2+)at 2.3 A resolution, the first structure of a chorismate-utilizing enzyme with a non-aromatic reaction product. EntC exhibits a complex alpha+beta fold like the other chorismate-utilizing enzymes, such as salicylate synthase and anthranilate synthase. Comparison of active site structures allowed the identification of several residues, not discussed previously, that might be important for the isochorismate activity of the EntC. Although EntC, MenF and Irp9 all convert chorismate to isochorismate, only Irp9 subsequently exhibits isochorismate pyruvate lyase activity resulting in the formation of salicylate and pyruvate as the reaction products. With a view to understanding the roles of these amino acid residues in the conversion of chorismate to isochorismate and to obtaining clues about the pyruvate lyase activity of Irp9, several mutants of EntC were generated in which the selected residues in EntC were substituted for those of Irp9: these included A303T, L304A, F327Y, I346L and F359Q mutations. Biochemical analysis of these mutants indicated that the side chain of A303 in EntC may be crucial in the orientation of the carbonyl to allow formation of a hydrogen bond with isochorismate. Some mutations, such as L304A and F359Q, give rise to a loss of catalytic activity, whereas others, such as F327Y and I346L, show that subtle changes in the otherwise closely similar active sites influence activity. We did not find a combination of these residues that conferred pyruvate lyase activity.
Related JoVE Video
A fragment-based approach to probing adenosine recognition sites by using dynamic combinatorial chemistry.
Chembiochem
PUBLISHED: 10-15-2009
Show Abstract
Hide Abstract
A new strategy that combines the concepts of fragment-based drug design and dynamic combinatorial chemistry (DCC) for targeting adenosine recognition sites on enzymes is reported. We demonstrate the use of 5-deoxy-5-thioadenosine as a noncovalent anchor fragment in dynamic combinatorial libraries templated by Mycobacterium tuberculosis pantothenate synthetase. A benzyl disulfide derivative was identified upon library analysis by HPLC. Structural and binding studies of protein-ligand complexes by X-ray crystallography and isothermal titration calorimetry informed the subsequent optimisation of the DCC hit into a disulfide containing the novel meta-nitrobenzyl fragment that targets the pantoate binding site of pantothenate synthetase. Given the prevalence of adenosine-recognition motifs in enzymes, our results provide a proof-of-concept for using this strategy to probe adjacent pockets for a range of adenosine binding enzymes, including other related adenylate-forming ligases, kinases, and ATPases, as well as NAD(P)(H), CoA and FAD(H2) binding proteins.
Related JoVE Video
Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments.
J. Am. Chem. Soc.
PUBLISHED: 10-06-2009
Show Abstract
Hide Abstract
A microfluidic device capable of storing picoliter droplets containing single bacteria at constant volumes has been fabricated in PDMS. Once captured in droplets that remain static in the device, bacteria express both a red fluorescent protein (mRFP1) and the enzyme, alkaline phosphatase (AP), from a biscistronic construct. By measuring the fluorescence intensity of both the mRFP1 inside the cells and a fluorescent product formed as a result of the enzymatic activity outside the cells, gene expression and enzymatic activity can be simultaneously and continuously monitored. By collecting data from many individual cells, the distribution of activities in a cell is quantified and the difference in activity between two AP mutants is measured.
Related JoVE Video
Biofunctionalized protein resistant oligo(ethylene glycol)-derived polymer brushes as selective immobilization and sensing platforms.
Biomacromolecules
PUBLISHED: 09-19-2009
Show Abstract
Hide Abstract
Poly(oligo(ethylene glycol) methacrylate) (POEGMA) brushes are extremely protein resistant polymer coatings that can reduce nonspecific adsorption of proteins from complex mixtures such as blood, sera and plasma. These coatings can be prepared via atom transfer radical polymerization with excellent control of their thickness and grafting density. We studied their direct functionalization with streptavidin and developed an assay for determining which coupling conditions afford the highest streptavidin loading efficiency. Disuccinimidyl carbonate was found to be the most efficient activating agent for covalent capture of the receptor. Using infrared and X-ray photoelectron spectroscopy, fluorescence microscopy, surface plasmon resonance, and ellipsometry, we examined how structural parameters such as the length of the oligo(ethylene glycol) side chain affect streptavidin functionalization, but also immobilization of biotinylated antibodies, subsequent selective secondary recognition and nonspecific binding of proteins. We found evidence that large macromolecules cannot infiltrate dense polymer brushes and that bulky antibody recognition occurs in the upper part of these coatings.
Related JoVE Video
Coupling microdroplet microreactors with mass spectrometry: reading the contents of single droplets online.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
Fully integrated: Mass spectrometry has been integrated into a detection scheme for microdroplets that are created within microfluidic channels (see picture, scale bar 200 microm). This technique allows droplets to be identified based on the compounds they contain, and combines fluorescence screening with MS analysis. These experiments indicate how similar approaches can be applied to the ambitious goals of on-chip protein evolution and chemical synthesis.
Related JoVE Video
Synthesis and evaluation of 2,5-dihydrochorismate analogues as inhibitors of the chorismate-utilising enzymes.
Org. Biomol. Chem.
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
A library of 2,5-dihydrochorismate analogues were designed as inhibitors of the chorismate-utilising enzymes including anthranilate synthase, isochorismate synthase, salicylate synthase and 4-amino-4-deoxychorismate synthase. The inhibitors were synthesised in seven or eight steps from shikimic acid, sourced from star anise. The compounds exhibited moderate but differential inhibition against the four chorismate-utilising enzymes.
Related JoVE Video
Simultaneous measurement of reactions in microdroplets filled by concentration gradients.
Lab Chip
PUBLISHED: 03-19-2009
Show Abstract
Hide Abstract
This work describes a technology for performing and monitoring simultaneously several reactions confined in strings of microdroplets having identical volumes but different composition, and travelling with the same speed in parallel channels of a microfluidic device. This technology, called parallel microdroplets technology (PmicroD), uses an inverted optical microscope and a charge-coupled device (CCD) camera to collect images and analyze them so as to report on the reactions occurring in these microdroplets. A concentration gradient of one reactant is created in the microfluidic device. In each channel, a different concentration of this reactant is mixed with a fixed amount of a second reactant. Using planar flow-focusing methodology, these mixtures are confined in microdroplets of pL size which travel in oil as continuous medium, avoiding laminar dispersion. By analyzing the images of parallel strings of microdroplets, the time courses of several reactions with different reagent compositions are investigated simultaneously. In order to design the microfluidic device that consists in a complex network of channels having well-defined geometries and restricted positions, the theoretical concept of equivalent channels (i.e. channels having identical hydraulic resistance) is exploited and developed. As a demonstration of the PmicroD technology, an enzyme activity assay was carried out and the steady-state kinetic constants were determined.
Related JoVE Video
Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays.
Anal. Chem.
PUBLISHED: 03-17-2009
Show Abstract
Hide Abstract
Water-in-oil microdroplets in microfluidics are well-defined individual picoliter reaction compartments and, as such, have great potential for quantitative high-throughput biological screening. This, however, depends upon contents of the droplets not leaking out into the oil phase. To assess the mechanism of possible leaking, the retention of various fluorescein derivatives from droplets formed in mineral oil and stored for hours in a reservoir on chip was studied. Leaking into the oil phase was observed and was shown to be dependent on the nature of the compounds and on the concentration of the silicone-based polymeric surfactant Abil EM 90 used. In experiments in which droplets filled with fluorescein were mixed with droplets filled with only buffer, the rate of efflux from filled droplets to empty droplets was dependent on the number of neighboring droplets of different composition. Buffer droplets with five fluorescein-containing neighbors took up the fluorophore 4.5 times faster than buffer droplets without fluorescein neighbors. The addition of bovine serum albumin (BSA) substantially reduced leaking. A formulation with 5% BSA reduces leaking of the fluorophore from 45% to 3%. Inclusion of BSA enabled experiments to be carried out over periods up to 18 h, without substantial leaking (<5%). We demonstrate the utility of this additive by following the enzymatic activity of alkaline phosphatase expressed by Escherichia coli cells. The ability to reliably compartmentalize genotype (cell) and phenotype (reaction product) is the basis for using microdroplets in directed evolution studies, and the approaches described herein provide a test system for assessing emulsion formulations for such purposes.
Related JoVE Video
An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets.
Lab Chip
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
We present a modular system of microfluidic PDMS devices designed to incorporate the steps necessary for cell biological assays based on mammalian tissue culture on-chip. The methods described herein include the on-chip immobilization and culturing of cells as well as their manipulation by transfection. Assessment of cell viability by flow cytrometry suggests low attrition rates (<3%) and excellent growth properties in the device for up to 7 days for CHO-K1 cells. To demonstrate that key procedures from the repertoire of cell biology are possible in this format, transfection of a reporter gene (encoding green fluorescent protein) was carried out. The modular design enables efficient detachment and recollection of cells and allows assessment of the success of transfection achieved on-chip. The transfection levels (20%) are comparable to standard large scale procedures and more than 500 cells could be transfected. Finally, cells are transferred into microfluidic microdoplets, where in principle a wide range of subsequent assays can be carried out at the single cell level in droplet compartments. The procedures developed for this modular device layout further demonstrate that commonly used methods in cell biology involving mammalian cells can be reliably scaled down to allow single cell investigations in picolitre volumes.
Related JoVE Video
Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays.
Lab Chip
PUBLISHED: 03-07-2009
Show Abstract
Hide Abstract
We describe the design, fabrication and use of a single-layered poly(dimethylsiloxane) microfluidic structure for the entrapment and release of microdroplets in an array format controlled entirely by liquid flow. Aqueous picoliter droplets are trapped en masse and optically monitored for extended periods of time. Such an array-based approach is used to characterize droplet shrinkage, aggregation of encapsulated E. coli cells and enzymatic reactions. We also demonstrate that trapped droplets may be recovered from the microfluidic array for further processing.
Related JoVE Video
Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets.
Anal. Chem.
PUBLISHED: 02-10-2009
Show Abstract
Hide Abstract
We present a high throughput microfluidic device for continuous-flow polymerase chain reaction (PCR) in water-in-oil droplets of nanoliter volumes. The circular design of this device allows droplets to pass through alternating temperature zones and complete 34 cycles of PCR in only 17 min, avoiding temperature cycling of the entire device. The temperatures for the applied two-temperature PCR protocol can be adjusted according to requirements of template and primers. These temperatures were determined with fluorescence lifetime imaging (FLIM) inside the droplets, exploiting the temperature-dependent fluorescence lifetime of rhodamine B. The successful amplification of an 85 base-pair long template from four different start concentrations was demonstrated. Analysis of the product by gel-electrophoresis, sequencing, and real-time PCR showed that the amplification is specific and the amplification factors of up to 5 x 10(6)-fold are comparable to amplification factors obtained in a benchtop PCR machine. The high efficiency allows amplification from a single molecule of DNA per droplet. This device holds promise for convenient integration with other microfluidic devices and adds a critical missing component to the laboratory-on-a-chip toolkit.
Related JoVE Video
Discovery of Schaeffers acid analogues as lead structures of mycobacterium tuberculosis type?II dehydroquinase using a rational drug design approach.
ChemMedChem
Show Abstract
Hide Abstract
Rational ligand design: Schaeffers acid analogues were identified as novel inhibitors of M.?tuberculosis type II dehydroquinase, a key enzyme of the shikimate pathway. Their likely binding mode was predicted using a combination of ensemble docking and flexible active site residues. Potentially, this scaffold could provide a good starting point for the design of antitubercular agents.
Related JoVE Video
Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification.
J R Soc Interface
Show Abstract
Hide Abstract
One of the initial steps of modern drug discovery is the identification of small organic molecules able to inhibit a target macromolecule of therapeutic interest. A small proportion of these hits are further developed into lead compounds, which in turn may ultimately lead to a marketed drug. A commonly used screening protocol used for this task is high-throughput screening (HTS). However, the performance of HTS against antibacterial targets has generally been unsatisfactory, with high costs and low rates of hit identification. Here, we present a novel computational methodology that is able to identify a high proportion of structurally diverse inhibitors by searching unusually large molecular databases in a time-, cost- and resource-efficient manner. This virtual screening methodology was tested prospectively on two versions of an antibacterial target (type II dehydroquinase from Mycobacterium tuberculosis and Streptomyces coelicolor), for which HTS has not provided satisfactory results and consequently practically all known inhibitors are derivatives of the same core scaffold. Overall, our protocols identified 100 new inhibitors, with calculated K(i) ranging from 4 to 250 ?M (confirmed hit rates are 60% and 62% against each version of the target). Most importantly, over 50 new active molecular scaffolds were discovered that underscore the benefits that a wide application of prospectively validated in silico screening tools is likely to bring to antibacterial hit identification.
Related JoVE Video
Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening.
Chem. Biol.
Show Abstract
Hide Abstract
Whole-cell screening of Mycobacterium tuberculosis (Mtb) remains a mainstay of drug discovery, but subsequent target elucidation often proves difficult. Conditional mutants that underexpress essential genes have been used to identify compounds with known mechanism of action by target-based whole-cell screening (TB-WCS). Here, the feasibility of TB-WCS in Mtb was assessed by generating mutants that conditionally express pantothenate synthetase (panC), diaminopimelate decarboxylase (lysA), and isocitrate lyase (icl1). The essentiality of panC and lysA, and conditional essentiality of icl1 for growth on fatty acids, was confirmed. Depletion of PanC and Icl1 rendered mutants hypersensitive to target-specific inhibitors. Stable reporter strains were generated for use in high-throughput screening, and their utility was demonstrated by identifying compounds that display greater potency against a PanC-depleted strain. These findings illustrate the power of TB-WCS as a tool for tuberculosis drug discovery.
Related JoVE Video
High-throughput interrogation of ligand binding mode using a fluorescence-based assay.
Angew. Chem. Int. Ed. Engl.
Show Abstract
Hide Abstract
Probing the pocket: A high-throughput fluorescence-based thermal shift (FTS) assay utilized different forms of a protein (in gray) to establish the binding mode of a ligand (see picture). The assay serves in the rapid evaluation of structure-activity binding-mode relationships for a series of ligands of Plk1, an important target of anticancer therapy.
Related JoVE Video
Fragment-based approaches in drug discovery and chemical biology.
Biochemistry
Show Abstract
Hide Abstract
Fragment-based approaches to finding novel small molecules that bind to proteins are now firmly established in drug discovery and chemical biology. Initially developed primarily in a few centers in the biotech and pharma industry, this methodology has now been adopted widely in both the pharmaceutical industry and academia. After the initial success with kinase targets, the versatility of this approach has now expanded to a broad range of different protein classes. Herein we describe recent fragment-based approaches to a wide range of target types, including Hsp90, ?-secretase, and allosteric sites in human immunodeficiency virus protease and fanesyl pyrophosphate synthase. The role of fragment-based approaches in an academic research environment is also examined with an emphasis on neglected diseases such as tuberculosis. The development of a fragment library, the fragment screening process, and the subsequent fragment hit elaboration will be discussed using examples from the literature.
Related JoVE Video
Fabrication of microgel particles with complex shape via selective polymerization of aqueous two-phase systems.
Small
Show Abstract
Hide Abstract
Microgel particles are formed from aqueous-two-phase-system (ATPS) droplets in poly(dimethylsiloxane) (PDMS) microfluidic devices. The droplets consist of a dextran core and a photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) shell. Upon UV exposure, the ATPS droplets undergo a shape-transformation yielding PEGDA microgel particles containing a socket.
Related JoVE Video
Mycobacterium tuberculosis cytochrome P450 enzymes: a cohort of novel TB drug targets.
Biochem. Soc. Trans.
Show Abstract
Hide Abstract
TB (tuberculosis) disease remains responsible for the death of over 1.5 million people each year. The alarming emergence of drug-resistant TB has sparked a critical need for new front-line TB drugs with a novel mode of action. In the present paper, we review recent genomic and biochemical evidence implicating Mycobacterium tuberculosis CYP (cytochrome P450) enzymes as exciting potential targets for new classes of anti-tuberculars. We also discuss HTS (high-throughput screening) and fragment-based drug-discovery campaigns that are being used to probe their potential druggability.
Related JoVE Video
Probing riboswitch-ligand interactions using thiamine pyrophosphate analogues.
Org. Biomol. Chem.
Show Abstract
Hide Abstract
The Escherichia coli thiM riboswitch forms specific contacts with its natural ligand, thiamine pyrophosphate (TPP or thiamine diphosphate), allowing it to generate not only nanomolar binding affinity, but also a high degree of discrimination against similar small molecules. A range of synthetic TPP analogues have been used to probe each of the riboswitch-ligand interactions. The results show that the pyrimidine-sensing helix of thiM is exquisitely tuned to select for TPP by recognising the H-bonding donor and acceptors around its aminopyrimidine ring and also by forming ?-stacking interactions that may be sensitive to the electronics of the ring. The central thiazolium ring of TPP appears to be more important for ligand recognition than previously thought. It may contribute to binding via long-range electrostatic interactions and/or by exerting an electron withdrawing effect on the pyrimidine ring, allowing its presence to be sensed indirectly and thereby allowing discrimination between thiamine (and its phosphate esters) and other aminopyrimidines found in vivo. The pyrophosphate moiety is essential for submicromolar binding affinity, but unexpectedly, it does not appear to be strictly necessary for modulation of gene expression.
Related JoVE Video
Structure of Escherichia coli aspartate ?-decarboxylase Asn72Ala: probing the role of Asn72 in pyruvoyl cofactor formation.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
Show Abstract
Hide Abstract
The crystal structure of the Asn72Ala site-directed mutant of Escherichia coli aspartate ?-decarboxylase (ADC) has been determined at 1.7 Å resolution. The refined structure is consistent with the presence of a hydrolysis product serine in the active site in place of the pyruvoyl group required for catalysis, which suggests that the role of Asn72 is to protect the ester formed during ADC activation from hydrolysis. In previously determined structures of activated ADC, including the wild type and other site-directed mutants, the C-terminal region of the protein is disordered, but in the Asn72Ala mutant these residues are ordered owing to an interaction with the active site of the neighbouring symmetry-related multimer.
Related JoVE Video
One-step fabrication of supramolecular microcapsules from microfluidic droplets.
Science
Show Abstract
Hide Abstract
Although many techniques exist for preparing microcapsules, it is still challenging to fabricate them in an efficient and scalable process without compromising functionality and encapsulation efficiency. We demonstrated a simple one-step approach that exploits a versatile host-guest system and uses microfluidic droplets to generate porous microcapsules with easily customizable functionality. The capsules comprise a polymer-gold nanoparticle composite held together by cucurbit[8]uril ternary complexes. The dynamic yet highly stable micrometer-sized structures can be loaded in one step during capsule formation and are amenable to on-demand encapsulant release. The internal chemical environment can be probed with surface enhanced Raman spectroscopy.
Related JoVE Video
A structure-guided fragment-based approach for the discovery of allosteric inhibitors targeting the lipophilic binding site of transcription factor EthR.
Biochem. J.
Show Abstract
Hide Abstract
A structure-guided fragment-based approach is used to target the lipophilic allosteric binding site of Mycobacterium tuberculosis EthR. This elongated channel has many hydrophobic residues lining the binding site, with few opportunities for hydrogen bonding. We demonstrate that a fragment-based approach involving the inclusion of flexible fragments in the library leads to an efficient exploration of chemical space, that fragment binding can lead to an extension of the cavity, and that fragments are able to identify hydrogen-bonding opportunities in this hydrophobic environment that are not exploited in nature. We report the identification of a 1 µM affinity ligand obtained by structure-guided fragment linking.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.