JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The influence of disease categories on gene candidate predictions from model organism phenotypes.
J Biomed Semantics
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The molecular etiology is still to be identified for about half of the currently described Mendelian diseases in humans, thereby hindering efforts to find treatments or preventive measures. Advances, such as new sequencing technologies, have led to increasing amounts of data becoming available with which to address the problem of identifying disease genes. Therefore, automated methods are needed that reliably predict disease gene candidates based on available data. We have recently developed Exomiser as a tool for identifying causative variants from exome analysis results by filtering and prioritising using a number of criteria including the phenotype similarity between the disease and mouse mutants involving the gene candidates. Initial investigations revealed a variation in performance for different medical categories of disease, due in part to a varying contribution of the phenotype scoring component.
Related JoVE Video
OPPL-Galaxy, a Galaxy tool for enhancing ontology exploitation as part of bioinformatics workflows.
J Biomed Semantics
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for automating the changes to be performed in an ontology. OPPL augments the ontologists toolbox by providing a more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual treatment.
Related JoVE Video
Improving ontologies by automatic reasoning and evaluation of logical definitions.
BMC Bioinformatics
PUBLISHED: 06-06-2011
Show Abstract
Hide Abstract
Ontologies are widely used to represent knowledge in biomedicine. Systematic approaches for detecting errors and disagreements are needed for large ontologies with hundreds or thousands of terms and semantic relationships. A recent approach of defining terms using logical definitions is now increasingly being adopted as a method for quality control as well as for facilitating interoperability and data integration.
Related JoVE Video
Mapping between the OBO and OWL ontology languages.
J Biomed Semantics
PUBLISHED: 03-07-2011
Show Abstract
Hide Abstract
Ontologies are commonly used in biomedicine to organize concepts to describe domains such as anatomies, environments, experiment, taxonomies etc. NCBO BioPortal currently hosts about 180 different biomedical ontologies. These ontologies have been mainly expressed in either the Open Biomedical Ontology (OBO) format or the Web Ontology Language (OWL). OBO emerged from the Gene Ontology, and supports most of the biomedical ontology content. In comparison, OWL is a Semantic Web language, and is supported by the World Wide Web consortium together with integral query languages, rule languages and distributed infrastructure for information interchange. These features are highly desirable for the OBO content as well. A convenient method for leveraging these features for OBO ontologies is by transforming OBO ontologies to OWL.
Related JoVE Video
ONTO-ToolKit: enabling bio-ontology engineering via Galaxy.
BMC Bioinformatics
PUBLISHED: 12-21-2010
Show Abstract
Hide Abstract
The biosciences increasingly face the challenge of integrating a wide variety of available data, information and knowledge in order to gain an understanding of biological systems. Data integration is supported by a diverse series of tools, but the lack of a consistent terminology to label these data still presents significant hurdles. As a consequence, much of the available biological data remains disconnected or worse: becomes misconnected. The need to address this terminology problem has spawned the building of a large number of bio-ontologies. OBOF, RDF and OWL are among the most used ontology formats to capture terms and relationships in the Life Sciences, opening the potential to use the Semantic Web to support data integration and further exploitation of integrated resources via automated retrieval and reasoning procedures.
Related JoVE Video
Entity/quality-based logical definitions for the human skeletal phenome using PATO.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 12-08-2009
Show Abstract
Hide Abstract
This paper describes an approach to providing computer-interpretable logical definitions for the terms of the Human Phenotype Ontology (HPO) using PATO, the ontology of phenotypic qualities, to link terms of the HPO to the anatomic and other entities that are affected by abnormal phenotypic qualities. This approach will allow improved computerized reasoning as well as a facility to compare phenotypes between different species. The PATO mapping will also provide direct links from phenotypic abnormalities and underlying anatomic structures encoded using the Foundational Model of Anatomy, which will be a valuable resource for computational investigations of the links between anatomical components and concepts representing diseases with abnormal phenotypes and associated genes.
Related JoVE Video
Novel sequence feature variant type analysis of the HLA genetic association in systemic sclerosis.
Hum. Mol. Genet.
PUBLISHED: 11-18-2009
Show Abstract
Hide Abstract
We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk.
Related JoVE Video
Survey-based naming conventions for use in OBO Foundry ontology development.
BMC Bioinformatics
PUBLISHED: 04-27-2009
Show Abstract
Hide Abstract
A wide variety of ontologies relevant to the biological and medical domains are available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical experience and surveys of community opinion.
Related JoVE Video
Mouse, man, and meaning: bridging the semantics of mouse phenotype and human disease.
Mamm. Genome
PUBLISHED: 04-15-2009
Show Abstract
Hide Abstract
Now that the laboratory mouse genome is sequenced and the annotation of its gene content is improving, the next major challenge is the annotation of the phenotypic associations of mouse genes. This requires the development of systematic phenotyping pipelines that use standardized phenotyping procedures which allow comparison across laboratories. It also requires the development of a sophisticated informatics infrastructure for the description and interchange of phenotype data. Here we focus on the current state of the art in the description of data produced by systematic phenotyping approaches using ontologies, in particular, the EQ (Entity-Quality) approach, and what developments are required to facilitate the linking of phenotypic descriptions of mutant mice to human diseases.
Related JoVE Video
An improved ontological representation of dendritic cells as a paradigm for all cell types.
BMC Bioinformatics
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL), designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal rigor of ontologies to better support computation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CLs utility for computation and for cross-species data integration.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.