JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Quantification of blood flow and topology in developing vascular networks.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Since fluid dynamics plays a critical role in vascular remodeling, quantification of the hemodynamics is crucial to gain more insight into this complex process. Better understanding of vascular development can improve prediction of the process, and may eventually even be used to influence the vascular structure. In this study, a methodology to quantify hemodynamics and network structure of developing vascular networks is described. The hemodynamic parameters and topology are derived from detailed local blood flow velocities, obtained by in vivo micro-PIV measurements. The use of such detailed flow measurements is shown to be essential, as blood vessels with a similar diameter can have a large variation in flow rate. Measurements are performed in the yolk sacs of seven chicken embryos at two developmental stages between HH 13+ and 17+. A large range of flow velocities (1 µm/s to 1 mm/s) is measured in blood vessels with diameters in the range of 25-500 µm. The quality of the data sets is investigated by verifying the flow balances in the branching points. This shows that the quality of the data sets of the seven embryos is comparable for all stages observed, and the data is suitable for further analysis with known accuracy. When comparing two subsequently characterized networks of the same embryo, vascular remodeling is observed in all seven networks. However, the character of remodeling in the seven embryos differs and can be non-intuitive, which confirms the necessity of quantification. To illustrate the potential of the data, we present a preliminary quantitative study of key network topology parameters and we compare these with theoretical design rules.
Related JoVE Video
Ultrasound imaging velocimetry: effect of beam sweeping on velocity estimation.
Ultrasound Med Biol
PUBLISHED: 02-03-2013
Show Abstract
Hide Abstract
As an emerging flow-mapping tool that can penetrate deep into optically opaque media such as human tissue, ultrasound imaging velocimetry has promise in various clinical applications. Previous studies have shown that errors occur in velocity estimation, but the causes have not been well characterised. In this study, the error in velocity estimation resulting from ultrasound beam sweeping in image acquisition is quantitatively investigated. The effects on velocity estimation of the speed and direction of beam sweeping relative to those of the flow are studied through simulation and experiment. The results indicate that a relative error in velocity estimation of up to 20% can be expected. Correction methods to reduce the errors under steady flow conditions are proposed and evaluated. Errors in flow estimation under unsteady flow are discussed.
Related JoVE Video
Tgf?/Alk5 signaling is required for shear stress induced klf2 expression in embryonic endothelial cells.
Dev. Dyn.
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
Endothelial cells (EC) translate biomechanical forces into functional and phenotypic responses that play important roles in cardiac development. Specifically, EC in areas of high shear stress, i.e., in the cardiac outflow tract and atrioventricular canal, are characterized by high expression of Krüppel-like factor 2 (Klf2) and by transforming growth factor-beta (Tgf?)-driven endothelial-to-mesenchymal transition. Extraembryonic venous obstruction (venous clip model) results in congenital heart malformations, and venous clip-induced alterations in shear stress-related gene expression are suggestive for an increase in cardiac shear stress. Here, we study the effects of shear stress on Klf2 expression and Tgf?-associated signaling in embryonic EC in vivo using the venous clip model and in vitro by subjecting cultured EC to fluid flow. Cellular responses were assessed by analysis of Klf2, Tgf? ligands, and their downstream signaling targets. Results show that, in embryonic EC, shear stress activates Tgf?/Alk5 signaling and that induction of Klf2 is an Alk5 dependent process.
Related JoVE Video
Zebrafish embryo development in a microfluidic flow-through system.
Lab Chip
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
The zebrafish embryo is a small, cheap, whole-animal model which may replace rodents in some areas of research. Unfortunately, zebrafish embryos are commonly cultured in microtitre plates using cell-culture protocols with static buffer replacement. Such protocols are highly invasive, consume large quantities of reagents and do not readily permit high-quality imaging. Zebrafish and rodent embryos have previously been cultured in static microfluidic drops, and zebrafish embryos have also been raised in a prototype polydimethylsiloxane setup in a Petri dish. Other than this, no animal embryo has ever been shown to undergo embryonic development in a microfluidic flow-through system. We have developed and prototyped a specialized lab-on-a-chip made from bonded layers of borosilicate glass. We find that zebrafish embryos can develop in the chip for 5 days, with continuous buffer flow at pressures of 0.005-0.04 MPa. Phenotypic effects were seen, but these were scored subjectively as minor. Survival rates of 100% could be reached with buffer flows of 2 µL per well per min. High-quality imaging was possible. An acute ethanol exposure test in the chip replicated the same assay performed in microtitre plates. More than 100 embryos could be cultured in an area, excluding infrastructure, smaller than a credit card. We discuss how biochip technology, coupled with zebrafish larvae, could allow biological research to be conducted in massive, parallel experiments, at high speed and low cost.
Related JoVE Video
Accurate blood flow measurements: are artificial tracers necessary?
PLoS ONE
Show Abstract
Hide Abstract
Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.