JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit.
Cell Stem Cell
PUBLISHED: 02-26-2014
Show Abstract
Hide Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of myeloid neoplasms with defects in hematopoietic stem and progenitor cells (HSPCs) and possibly the HSPC niche. Here, we show that patient-derived mesenchymal stromal cells (MDS MSCs) display a disturbed differentiation program and are essential for the propagation of MDS-initiating Lin(-)CD34(+)CD38(-) stem cells in orthotopic xenografts. Overproduction of niche factors such as CDH2 (N-Cadherin), IGFBP2, VEGFA, and LIF is associated with the ability of MDS MSCs to enhance MDS expansion. These factors represent putative therapeutic targets in order to disrupt critical hematopoietic-stromal interactions in MDS. Finally, healthy MSCs adopt MDS MSC-like molecular features when exposed to hematopoietic MDS cells, indicative of an instructive remodeling of the microenvironment. Therefore, this patient-derived xenograft model provides functional and molecular evidence that MDS is a complex disease that involves both the hematopoietic and stromal compartments. The resulting deregulated expression of niche factors may well also be a feature of other hematopoietic malignancies.
Related JoVE Video
Expression and prognostic significance of cancer stem cell markers CD24 and CD44 in urothelial bladder cancer xenografts and patients undergoing radical cystectomy.
Urol. Oncol.
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
To evaluate CD24/CD44/CD47 cancer stem cell marker expressions in bladder cancer (BCa) and provide data on their prognostic significance for clinical outcome in patients undergoing radical cystectomy (RC).
Related JoVE Video
The impact of type 2 diabetes on the outcome of localized renal cell carcinoma.
World J Urol
PUBLISHED: 07-27-2013
Show Abstract
Hide Abstract
To evaluate the influence of type 2 diabetes on cancer-specific outcome in patients undergoing surgery for localized renal cell carcinoma (RCC).
Related JoVE Video
Development and characteristics of preclinical experimental models for the research of rare neuroendocrine bladder cancer.
J. Urol.
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
For rare cancers such as neuroendocrine bladder cancer treatment options are limited due partly to the lack of preclinical models. Techniques to amplify rare primary neuroendocrine bladder cancer cells could provide novel tools for the discovery of drug and diagnostic targets. We developed preclinical experimental models for neuroendocrine bladder cancer.
Related JoVE Video
Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction.
Stem Cells
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
The identification of novel approaches to specifically target the DNA-damage checkpoint response in chemotherapy-resistant cancer stem cells (CSC) of solid tumors has recently attracted great interest. We show here in colon cancer cell lines and primary colon cancer cells that inhibition of checkpoint-modulating phosphoinositide 3-kinase-related (PIK) kinases preferentially depletes the chemoresistant and exclusively tumorigenic CD133(+) cell fraction. We observed a time- and dose-dependent disproportionally pronounced loss of CD133(+) cells and the consecutive lack of in vitro and in vivo tumorigenicity of the remaining cells. Depletion of CD133(+) cells was initiated through apoptosis of cycling CD133(+) cells and further substantiated through subsequent recruitment of quiescent CD133(+) cells into the cell cycle followed by their elimination. Models using specific PIK kinase inhibitors, somatic cell gene targeting, and RNA interference demonstrated that the observed detrimental effects of caffeine on CSC were attributable specifically to the inhibition of the PIK kinase ataxia telangiectasia- and Rad3-related (ATR). Mechanistically, phosphorylation of CHK1 checkpoint homolog (S. pombe; CHK1) was significantly enhanced in CD133(+) as compared with CD133(-) cells on treatment with DNA interstrand-crosslinking (ICL) agents, indicating a preferential activation of the ATR/CHK1-dependent DNA-damage response in tumorigenic CD133(+) cells. Consistently, the chemoresistance of CD133(+) cells toward DNA ICL agents was overcome through inhibition of ATR/CHK1-signaling. In conclusion, our study illustrates a novel target to eliminate the tumorigenic CD133(+) cell population in colon cancer and provides another rationale for the development of specific ATR-inhibitors.
Related JoVE Video
Establishment and characterization of a highly tumourigenic and cancer stem cell enriched pancreatic cancer cell line as a well defined model system.
PLoS ONE
Show Abstract
Hide Abstract
Standard cancer cell lines do not model the intratumoural heterogeneity situation sufficiently. Clonal selection leads to a homogeneous population of cells by genetic drift. Heterogeneity of tumour cells, however, is particularly critical for therapeutically relevant studies, since it is a prerequisite for acquiring drug resistance and reoccurrence of tumours. Here, we report the isolation of a highly tumourigenic primary pancreatic cancer cell line, called JoPaca-1 and its detailed characterization at multiple levels. Implantation of as few as 100 JoPaca-1 cells into immunodeficient mice gave rise to tumours that were histologically very similar to the primary tumour. The high heterogeneity of JoPaca-1 was reflected by diverse cell morphology and a substantial number of chromosomal aberrations. Comparative whole-genome sequencing of JoPaca-1 and BxPC-3 revealed mutations in genes frequently altered in pancreatic cancer. Exceptionally high expression of cancer stem cell markers and a high clonogenic potential in vitro and in vivo was observed. All of these attributes make this cell line an extremely valuable model to study the biology of and pharmaceutical effects on pancreatic cancer.
Related JoVE Video
Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth.
J. Immunol.
Show Abstract
Hide Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells in cancer patients and tumor-bearing mice that potently inhibits T cell responses. During tumor progression, MDSCs accumulate in several organs, including the tumor tissue. So far, tumor-infiltrating MDSC subpopulations remain poorly explored. In this study, we performed global gene expression profiling of mouse tumor-infiltrating granulocytic and monocytic (MO-MDSC) subsets compared with MDSCs from peripheral blood. RMA-S lymphoma-infiltrating MO-MDSCs not only produced high levels of NO and arginase-1, but also greatly increased levels of chemokines comprising the CCR5 ligands CCL3, CCL4, and CCL5. MO-MDSCs isolated from B16 melanoma and from skin tumor-bearing ret transgenic mice also expressed high levels of CCL3, CCL4, and CCL5. Expression of CCR5 was preferentially detected on regulatory T cells (Tregs). Accordingly, tumor-infiltrating MO-MDSCs directly attracted high numbers of Tregs via CCR5 in vitro. Intratumoral injection of CCL4 or CCL5 increased tumor-infiltrating Tregs, and deficiency of CCR5 led to their profound decrease. Moreover, in CCR5-deficient mice, RMA-S and B16 tumor growth was delayed emphasizing the importance of CCR5 in the control of antitumor immune responses. Overall, our data demonstrate that chemokines secreted by tumor-infiltrating MO-MDSCs recruit high numbers of Tregs revealing a novel suppressive role of MDSCs with potential clinical implications for the development of cancer immunotherapies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.