JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Herbert Steinbeisser: a life with the Xenopus embryo.
Int. J. Dev. Biol.
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
Herbert Steinbeisser was a developmental biologist completely immersed in science. Of a cheerful disposition and constant good humor, he was the best collaborator one could hope for. When such a nice, kind colleague is taken by cancer at age 56 it seems so unjust. Yet, his life is an illustration of how wonderful a life in science can be and we would like to relate it here.
Related JoVE Video
Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways.
Neuron
PUBLISHED: 05-19-2014
Show Abstract
Hide Abstract
Wnt signaling represents a highly versatile signaling system, which plays diverse and critical roles in various aspects of neural development. Sensory neurons of the dorsal root ganglia require Wnt signaling for initial cell-fate determination as well as patterning and synapse formation. Here we report that Wnt signaling pathways persist in adult sensory neurons and play a functional role in their sensitization in a pathophysiological context. We observed that Wnt3a recruits the Wnt-calcium signaling pathway and the Wnt planar cell polarity pathway in peripheral nerves to alter pain sensitivity in a modality-specific manner and we elucidated underlying mechanisms. In contrast, biochemical, pharmacological, and genetic studies revealed lack of functional relevance for the classical canonical ?-catenin pathway in peripheral sensory neurons in acute modulation of nociception. Finally, this study provides proof-of-concept for a translational potential for Wnt3a-Frizzled3 signaling in alleviating disease-related pain hypersensitivity in cancer-associated pain in vivo.
Related JoVE Video
Polarized Wnt signaling regulates ectodermal cell fate in Xenopus.
Dev. Cell
PUBLISHED: 03-05-2014
Show Abstract
Hide Abstract
How cells convert polarity cues into cell fate specification is incompletely understood. Here, we show that Wnt/?-catenin and Wnt/PCP signaling cooperate in this process in early Xenopus embryos. We find that the Wnt coreceptor Lrp6 is asymmetrically localized to the basolateral membrane in ectodermal blastomeres. Lrp6 asymmetry is controlled by Wnt/PCP signaling, indicating that this pathway regulates not only planar- but also apicobasal cell polarity. Following asymmetric cell division, Lrp6 preferentially sorts to the deep ectodermal cell layer and becomes depleted in the epithelial cell layer. This is accompanied by elevated Wnt/?-catenin signaling in deep cells, which in turn promotes their differentiation into ciliated cells. We conclude that coordinated Wnt/PCP and Wnt/?-catenin signaling convert apicobasal polarity information to specify ectodermal cell fate.
Related JoVE Video
Mitotic wnt signaling promotes protein stabilization and regulates cell size.
Mol. Cell
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Canonical Wnt signaling is thought to regulate cell behavior mainly by inducing ?-catenin-dependent transcription of target genes. In proliferating cells Wnt signaling peaks in the G2/M phase of the cell cycle, but the significance of this "mitotic Wnt signaling" is unclear. Here we introduce Wnt-dependent stabilization of proteins (Wnt/STOP), which is independent of ?-catenin and peaks during mitosis. We show that Wnt/STOP plays a critical role in protecting proteins, including c-MYC, from GSK3-dependent polyubiquitination and degradation. Wnt/STOP signaling increases cellular protein levels and cell size. Wnt/STOP, rather than ?-catenin signaling, is the dominant mode of Wnt signaling in several cancer cell lines, where it is required for cell growth. We propose that Wnt/STOP signaling slows down protein degradation as cells prepare to divide.
Related JoVE Video
Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A.
Mol. Cell
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
DNA methylation is a dynamic and reversible process that governs gene expression during development and disease. Several examples of active DNA demethylation have been documented, involving genome-wide and gene-specific DNA demethylation. How demethylating enzymes are targeted to specific genomic loci remains largely unknown. We show that an antisense lncRNA, termed TARID (for TCF21 antisense RNA inducing demethylation), activates TCF21 expression by inducing promoter demethylation. TARID interacts with both the TCF21 promoter and GADD45A (growth arrest and DNA-damage-inducible, alpha), a regulator of DNA demethylation. GADD45A in turn recruits thymine-DNA glycosylase for base excision repair-mediated demethylation involving oxidation of 5-methylcytosine to 5-hydroxymethylcytosine in the TCF21 promoter by ten-eleven translocation methylcytosine dioxygenase proteins. The results reveal a function of lncRNAs, serving as a genomic address label for GADD45A-mediated demethylation of specific target genes.
Related JoVE Video
Secreted and transmembrane wnt inhibitors and activators.
Cold Spring Harb Perspect Biol
PUBLISHED: 08-24-2013
Show Abstract
Hide Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-? and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Related JoVE Video
RAB8B is required for activity and caveolar endocytosis of LRP6.
Cell Rep
PUBLISHED: 03-10-2013
Show Abstract
Hide Abstract
Wnt/?-catenin signaling plays an important role in embryonic development and adult tissue homeostasis. When Wnt ligands bind to the receptor complex, LRP5/6 coreceptors are activated by phosphorylation and concomitantly endocytosed. In vertebrates, Wnt ligands induce caveolin-dependent endocytosis of LRP6 to relay signal downstream, whereas antagonists such as Dickkopf promote clathrin-dependent endocytosis, leading to inhibition. However, little is known about how LRP6 is directed to different internalization mechanisms, and how caveolin-dependent endocytosis is mediated. In an RNAi screen, we identified the Rab GTPase RAB8B as being required for Wnt/?-catenin signaling. RAB8B depletion reduces LRP6 activity, ?-catenin accumulation, and induction of Wnt target genes, whereas RAB8B overexpression promotes LRP6 activity and internalization and rescues inhibition of caveolar endocytosis. In Xenopus laevis and Danio rerio, RAB8B morphants show lower Wnt activity during embryonic development. Our results implicate RAB8B as an essential evolutionary conserved component of Wnt/?-catenin signaling through regulation of LRP6 activity and endocytosis.
Related JoVE Video
Downregulation of Dickkopf-3 disrupts prostate acinar morphogenesis through TGF-?/Smad signalling.
J. Cell. Sci.
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Loss of tissue organization is a hallmark of the early stages of cancer, and there is considerable interest in proteins that maintain normal tissue architecture. Prostate epithelial cells cultured in Matrigel form three-dimensional acini that mimic aspects of prostate gland development. The organization of these structures requires the tumor suppressor Dickkopf-3 (Dkk-3), a divergent member of the Dkk family of secreted Wnt signalling antagonists that is frequently downregulated in prostate cancer. To gain further insight into the function of Dkk-3 in the prostate, we compared the prostates of Dkk3-null mice with those of control littermates. We found increased proliferation of prostate epithelial cells in the mutant mice and changes in prostate tissue organization. Consistent with these observations, cell proliferation was elevated in acini formed by human prostate epithelial cells stably silenced for Dkk-3. Silencing of Dkk-3 increased TGF-?/Smad signalling, and inhibitors of TGF-?/Smad signalling rescued the defective acinar phenotype caused by loss of Dkk-3. These findings suggest that Dkk-3 maintains the structural integrity of the prostate gland by limiting TGF-?/Smad signalling.
Related JoVE Video
RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-?-catenin signaling.
Science
PUBLISHED: 02-14-2013
Show Abstract
Hide Abstract
Casein kinase 1 (CK1) members play key roles in numerous biological processes. They are considered "rogue" kinases, because their enzymatic activity appears unregulated. Contrary to this notion, we have identified the DEAD-box RNA helicase DDX3 as a regulator of the Wnt-?-catenin network, where it acts as a regulatory subunit of CK1?: In a Wnt-dependent manner, DDX3 binds CK1? and directly stimulates its kinase activity, and promotes phosphorylation of the scaffold protein dishevelled. DDX3 is required for Wnt-?-catenin signaling in mammalian cells and during Xenopus and Caenorhabditis elegans development. The results also suggest that the kinase-stimulatory function extends to other DDX and CK1 members, opening fresh perspectives for one of the longest-studied protein kinase families.
Related JoVE Video
Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline.
Cell Stem Cell
PUBLISHED: 02-12-2013
Show Abstract
Hide Abstract
Memory impairment has been associated with age-related decline in adult hippocampal neurogenesis. Although Notch, bone morphogenetic protein, and Wnt signaling pathways are known to regulate multiple aspects of adult neural stem cell function, the molecular basis of declining neurogenesis in the aging hippocampus remains unknown. Here, we show that expression of the Wnt antagonist Dickkopf-1 (Dkk1) increases with age and that its loss enhances neurogenesis in the hippocampus. Neural progenitors with inducible loss of Dkk1 increase their Wnt activity, which leads to enhanced self-renewal and increased generation of immature neurons. This Wnt-expanded progeny subsequently matures into glutamatergic granule neurons with increased dendritic complexity. As a result, mice deficient in Dkk1 exhibit enhanced spatial working memory and memory consolidation and also show improvements in affective behavior. Taken together, our findings show that upregulating Wnt signaling by reducing Dkk1 expression can counteract age-related decrease in neurogenesis and its associated cognitive decline.
Related JoVE Video
Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3.
Genes Dev.
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Active DNA demethylation regulates epigenetic gene activation in numerous processes, but how the target site specificity of DNA demethylation is determined and what factors are involved are still poorly understood. Here we show that the tumor suppressor inhibitor of growth protein 1 (Ing1) is required for targeting active DNA demethylation. Ing1 functions by recruiting the regulator of DNA demethylation growth arrest and DNA damage protein 45a (Gadd45a) to histone H3 trimethylated at Lys 4 (H3K4me3). We show that reduced H3K4 methylation impairs recruitment of Gadd45a/Ing1 and gene-specific DNA demethylation. Our results indicate that histone methylation directs DNA demethylation.
Related JoVE Video
LGR4 and LGR5 are R-spondin receptors mediating Wnt/?-catenin and Wnt/PCP signalling.
EMBO Rep.
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/?-catenin and Wnt/PCP signalling. R-spondin-triggered ?-catenin signalling requires Clathrin, while Wnt3a-mediated ?-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling.
Related JoVE Video
Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus.
Mech. Dev.
PUBLISHED: 06-23-2011
Show Abstract
Hide Abstract
Gadd45 genes encode a small family of multifunctional stress response proteins, mediating cell proliferation, apoptosis, DNA repair and DNA demethylation. Their role during embryonic development is incompletely understood. Here we identified Xenopus Gadd45b, compared Gadd45a, Gadd45b and Gadd45g expression during Xenopus embryogenesis, and characterized their gain and loss of function phenotypes. Gadd45a and Gadd45g act redundantly and double Morpholino knock down leads to pleiotropic phenotypes, including shortened axes, head defects and misgastrulation. In contrast, Gadd45b, which is expressed at very low levels, shows little effect upon knock down or overexpression. Gadd45ag double Morphants show reduced neural cell proliferation and downregulation of pan-neural and neural crest markers. In contrast, Gadd45ag Morphants display increased expression of multipotency marker genes including Xenopus oct4 homologs as well as gastrula markers, while mesodermal markers are downregulated. The results indicate that Gadd45ag are required for early embryonic cells to exit pluripotency and enter differentiation.
Related JoVE Video
Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development.
Gene Expr. Patterns
PUBLISHED: 06-12-2011
Show Abstract
Hide Abstract
Gadd45 proteins have been implicated in the cellular response to physiological or environmental stress and the accompanying cell cycle arrest, DNA repair, cell survival and senescence or apoptosis. Although their molecular function is well studied, the expression and role of Gadd45 genes during embryonic development in mice is largely unknown. Here we provide a comprehensive comparison of Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. In situ hybridizations on sectioned and whole mouse embryos show most prominent Gadd45a expression in the tip of the closing neural tube, the cranial and dorsal root ganglia and the somites. Mouse Gadd45b is expressed strongly in the chorion, but only weakly in the embryo proper, including somites and limb buds. Murine Gadd45g expression strongly resembles Xenopus and medaka fish expression in primary neuron precursors and post-mitotic neurons, indicating a conserved role for Gadd45g in vertebrate neurogenesis. Additionally, Gadd45 genes show conserved expression during somitogenesis. In summary, Gadd45 genes are expressed in evolutionary conserved, but also divergent domains, which predominantly encompass areas of cell differentiation, consistent with their established function in growth arrest and DNA demethylation.
Related JoVE Video
Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
What makes embryogenesis a robust and canalized process is an important question in developmental biology. A bone morphogenetic protein (BMP) morphogen gradient plays a key role in embryonic development, and we are beginning to understand how the self-regulating properties of its signaling circuitry ensure robust embryonic patterning. An unexplored question is why the BMP signaling circuit is organized as a modular synexpression group, with a prevalence of feedback inhibitors. Here, we provide evidence from direct experimentation and mathematical modeling that the synexpressed feedback inhibitors BAMBI, SMAD6, and SMAD7 (i) expand the dynamic BMP signaling range essential for proper embryonic patterning and (ii) reduce interindividual phenotypic and molecular variability in Xenopus embryos. Thereby, negative feedback linearizes signaling responses and confers robust patterning, thus promoting canalized development. The presence of negative feedback inhibitors in other growth factor synexpression groups suggests that these properties may constitute a general principle.
Related JoVE Video
An ATF2-based luciferase reporter to monitor non-canonical Wnt signaling in Xenopus embryos.
Dev. Dyn.
PUBLISHED: 05-10-2011
Show Abstract
Hide Abstract
Non-canonical/planar cell polarity (PCP) Wnt signaling plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Monitoring Wnt/PCP signaling relies mostly on semi-quantitative bioassays or biochemical analysis. Here we describe a luciferase reporter assay based on an ATF2 response element, which faithfully monitors non-canonical Wnt signaling in Xenopus embryos. The assay is simple, quantitative, and robust. It can be used to detect non-canonical Wnt signaling changes following gain and loss of function of pathway components, including Wnt, Frizzled, Ror2, Disheveled, Rac1, MKK7, and JNK. Wnt/PCP signaling has recently been implicated in left-right asymmetry and our reporter assay suggests that in gastrula embryos there is a right-ward bias in Wnt/PCP signaling. We also mapped Wnt/PCP signaling in the early Xenopus embryo and find that it peaks in the dorso-vegetal region, paralleling Wnt/?-catenin signaling.
Related JoVE Video
Transmembrane protein 198 promotes LRP6 phosphorylation and Wnt signaling activation.
Mol. Cell. Biol.
PUBLISHED: 05-02-2011
Show Abstract
Hide Abstract
Wnt/?-catenin signaling is fundamental in embryogenesis and tissue homeostasis in metazoans. Upon Wnt stimulation, cognate coreceptors LRP5 and LRP6 ([LRP5/6] low-density lipoprotein receptor-related proteins 5 and 6) are activated via phosphorylation at key residues. Although several kinases have been implicated, the LRP5/6 activation mechanism remains unclear. Here, we report that transmembrane protein 198 (TMEM198), a previously uncharacterized seven-transmembrane protein, is able to specifically activate LRP6 in transducing Wnt signaling. TMEM198 associates with LRP6 and recruits casein kinase family proteins, via the cytoplasmic domain, to phosphorylate key residues important for LRP6 activation. In mammalian cells, TMEM198 is required for Wnt signaling and casein kinase 1-induced LRP6 phosphorylation. During Xenopus embryogenesis, maternal and zygotic tmem198 mRNAs are widely distributed in the ectoderm and mesoderm. TMEM198 is required for Wnt-mediated neural crest formation, antero-posterior patterning, and particularly engrailed-2 expression in Xenopus embryos. Thus, our results identified TMEM198 as a membrane scaffold protein that promotes LRP6 phosphorylation and Wnt signaling activation.
Related JoVE Video
Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis.
Dev. Cell
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
The R-Spondin (Rspo) family of secreted Wnt modulators is involved in development and disease and holds therapeutic promise as stem cell growth factors. Despite growing biological importance, their mechanism of action is poorly understood. Here, we show that Rspo3 binds syndecan 4 (Sdc4) and that together they activate Wnt/PCP signaling. In Xenopus embryos, Sdc4 and Rspo3 are essential for two Wnt/PCP-driven processes-gastrulation movements and head cartilage morphogenesis. Rspo3/PCP signaling during gastrulation requires Wnt5a and is transduced via Fz7, Dvl, and JNK. Rspo3 functions by inducing Sdc4-dependent, clathrin-mediated endocytosis. We show that this internalization is essential for PCP signal transduction, suggesting that endocytosis of Wnt-receptor complexes is a key mechanism by which R-spondins promote Wnt signaling.
Related JoVE Video
Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling.
Dev. Biol.
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
Wnt signalling regulates several aspects of kidney development such as nephrogenesis, ureteric bud branching and organisation of the collecting duct cells. We addressed the potential involvement of Dickkopf-1 (Dkk1), a secreted Wnt pathway antagonist. Dkk1 is expressed in the developing mouse kidney by pretubular cell aggregates and the nephrons derived from them. Besides the mesenchyme cells, the epithelial ureteric bud and more mature ureteric bud derivatives in the medulla and the papilla tip express the Dkk1 gene. To reveal the potential roles of Dkk1, we generated a floxed allele and used three Cre lines to inactivate Dkk1 function in the developing kidney. Interestingly, Dkk1 deficiency induced by Pax8Cre in the kidneys led in newborn mice to an overgrown papilla that was generated by stimulated proliferation of the collecting duct and loop of Henle cells, implying a role for Dkk1 in the collecting duct and/or loop of Henle development. Since Pax8Cre-induced Dkk1 deficiency reduced marker gene expression, Scnn1b in the collecting duct and Slc12a1 in the loop of Henle, these results together with the extended papilla phenotype are likely reasons for the decreased amount of ions and urine produced by Dkk1-deficient kidneys in the adult. Recombinant Dkk1 protein in cultured cells inhibited Wnt-7b-induced canonical Wnt signalling, which is critical for collecting duct and loop of Henle development. Moreover, Dkk1 deficiency led to an increase in the expression of canonical Wnt signalling of target Lef-1 gene expression in the stromal cells of the developing papilla. Based on the results, we propose that Dkk1 controls the degree of Wnt-7b signalling in the papilla to coordinate kidney organogenesis.
Related JoVE Video
Dialectics, systems biology and embryonic induction.
Differentiation
PUBLISHED: 02-12-2011
Show Abstract
Hide Abstract
A hallmark of embryonic development is the temporal-spatial continuum of cell-cell interactions, which gives rise to the trajectory of progressive cell differentiations. Despite the great reductionists success in dissecting the mechanistic basis of developmental processes, the call for more holistic system theories never ceased during the last century. Various system theories were proposed to provide a more adequate understanding of biological systems, including development. Although widely ignored by modern biology, the first systematic system theory was Hegels dialectics. Here I examine the process of embryonic induction as elaborated by Hans Spemann in the light of dialectics. I conclude that embryonic induction and its underlying molecular mechanisms can be re-interpreted in terms of Hegels dialectics. The example highlights that despite its shortcomings, dialectics can be of heuristic value as a theory of systems biology.
Related JoVE Video
Dkk1 regulates ventral midbrain dopaminergic differentiation and morphogenesis.
PLoS ONE
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Dickkopf1 (Dkk1) is a Wnt/?-catenin inhibitor that participates in many processes during embryonic development. One of its roles during embryogenesis is to induce head formation, since Dkk1-null mice lack head structures anterior to midbrain. The Wnt/?-catenin pathway is also known to regulate different aspects of ventral midbrain (VM) dopaminergic (DA) neuron development and, in vitro, Dkk1-mediated inhibition of the Wnt/?-catenin pathway improves the DA differentiation in mouse embryonic stem cells (mESC). However, the in vivo function of Dkk1 on the development of midbrain DA neurons remains to be elucidated. Here we examined Dkk1(+/-) embryos and found that Dkk1 is required for the differentiation of DA precursors/neuroblasts into DA neurons at E13.5. This deficit persisted until E17.5, when a defect in the number and distribution of VM DA neurons was detected. Furthermore, analysis of the few Dkk1(-/-) embryos that survived until E17.5 revealed a more severe loss of midbrain DA neurons and morphogenesis defects. Our results thus show that Dkk1 is required for midbrain DA differentiation and morphogenesis.
Related JoVE Video
Negative autoregulation of Oct3/4 through Cdx1 promotes the onset of gastrulation.
Dev. Dyn.
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
Gastrulation marks the onset of germ layer formation from undifferentiated precursor cells maintained by a network including the Pou5f1 gene, Oct3/4. Negative regulation of the undifferentiated state is a prerequisite for germ layer formation and subsequent development. A novel cross-regulatory network was characterized including the Pou5f1 and Cdx1 genes as part of the signals controlling the onset of gastrulation. Of particular interest was the observation that, preceding gastrulation, the Xenopus Oct3/4 factors, Oct60, Oct25, and Oct91, positively regulate Cdx1 expression through FGF signaling, and during gastrulation the Oct3/4 factors become repressors of Cdx1. Cdx1 negatively regulates the Pou5f1 genes during gastrulation, thus contributing to the repression of the network maintaining the undifferentiated state and promoting the onset of gastrulation. These regulatory interactions suggest that Oct3/4 initiates its own negative autoregulation through Cdx1 up-regulation to begin the repression of pluripotency in preparation for the onset of gastrulation and germ layer differentiation.
Related JoVE Video
Gadd45a is an RNA binding protein and is localized in nuclear speckles.
PLoS ONE
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids.
Related JoVE Video
Wnt signaling: multivesicular bodies hold GSK3 captive.
Cell
PUBLISHED: 12-25-2010
Show Abstract
Hide Abstract
Two key events in Wnt signal transduction, receptor endocytosis and inactivation of Glycogen Synthase Kinase 3 (GSK3), remain incompletely understood. Taelman et al. (2010) discover that Wnt signaling inactivates GSK3 by sequestering the enzyme in multivesicular bodies, thus linking these two events and providing a new framework for understanding Wnt signaling.
Related JoVE Video
Polymorphisms in CTNNBL1 in relation to colorectal cancer with evolutionary implications.
Int J Mol Epidemiol Genet
PUBLISHED: 11-08-2010
Show Abstract
Hide Abstract
Colorectal cancer (CRC) is a complex disease related to environmental and genetic risk factors. Several studies have shown that susceptibility to complex diseases can be mediated by ancestral alleles. Using RNAi screening, CTNNBL1 was identified as a putative regulator of the Wnt signaling pathway, which plays a key role in colorectal carcinogenesis. Recently, single nucleotide polymorphisms (SNPs) in CTNNBL1 have been associated with obesity, a known risk factor for CRC. We investigated whether genetic variation in CTNNBL1 affects susceptibility to CRC and tested for signals of recent selection. We applied a tagging SNP approach that cover all known common variation in CTNNBL1 (allele frequency >5%; r(2)>0.8). A case-control study was carried out using two well-characterized study populations: a hospital-based Czech population composed of 751 sporadic cases and 755 controls and a family/early onset-based German population (697 cases and 644 controls). Genotyping was performed using allele specific PCR based TaqMan® assays (Applied Biosystems, Weiterstadt, Germany). In the Czech cohort, containing sporadic cases, the ancestral alleles of three SNPs showed evidence of association with CRC: rs2344481 (OR 1.44, 95%CI 1.06-1.95, dominant model), rs2281148 (OR 0.59, 95%CI 0.36-0.96, dominant model) and rs2235460 (OR 1.38, 95%CI 1.01-1.89, AA vs. GG). The associations were less prominent in the family/early onset-based German cohort. Data derived from several databases and statistical tests consistently pointed to a likely shaping of CTNNBL1 by positive selection. Further studies are needed to identify the actual function of CTNNBL1 and to validate the association results in other populations.
Related JoVE Video
Trafficking, acidification, and growth factor signaling.
Sci Signal
PUBLISHED: 08-03-2010
Show Abstract
Hide Abstract
Wnt and Notch signaling pathways play key roles in development and disease. Despite great progress, the mechanism of signal transduction of their receptor-ligand complexes still holds surprises. For example, in both pathways, endocytosis is required for downstream signaling, but the mechanism by which endocytosis permits signaling is still unknown. New evidence indicates that endocytosis is required for the receptor-ligand complex to reach an acidified vesicular compartment. In turn, enzymes responsible for acidification are essential for Notch and Wnt signaling and also directly interact with the receptors. These findings raise new questions concerning the mechanism by which low pH promotes signal transduction and may open new possibilities for therapeutic intervention through the targeting of acidifying enzymes.
Related JoVE Video
Gemcitabine functions epigenetically by inhibiting repair mediated DNA demethylation.
PLoS ONE
PUBLISHED: 06-29-2010
Show Abstract
Hide Abstract
Gemcitabine is a cytotoxic cytidine analog, which is widely used in anti-cancer therapy. One mechanism by which gemcitabine acts is by inhibiting nucleotide excision repair (NER). Recently NER was implicated in Gadd45 mediated DNA demethylation and epigenetic gene activation. Here we analyzed the effect of gemcitabine on DNA demethylation. We find that gemcitabine inhibits specifically Gadd45a mediated reporter gene activation and DNA demethylation, similar to the topoisomerase I inhibitor camptothecin, which also inhibits NER. In contrast, base excision repair inhibitors had no effect on DNA demethylation. In Xenopus oocytes, gemcitabine inhibits DNA repair synthesis accompanying demethylation of oct4. In mammalian cells, gemcitabine induces DNA hypermethylation and silencing of MLH1. The results indicate that gemcitabine induces epigenetic gene silencing by inhibiting repair mediated DNA demethylation. Thus, gemcitabine can function epigenetically and provides a tool to manipulate DNA methylation.
Related JoVE Video
Wnt/Frizzled signaling requires dPRR, the Drosophila homolog of the prorenin receptor.
Curr. Biol.
PUBLISHED: 05-05-2010
Show Abstract
Hide Abstract
Wnt/Wg signaling pathways are of key importance during development and disease. Canonical and noncanonical Wnt/Frizzled (Fz) pathways share a limited number of signaling components that are part of the membrane proximal signaling complex. In Drosophila, Fz and Dishevelled (Dsh) are the only two components known to be involved in both Wnt/beta-catenin and planar cell polarity (PCP) signaling. PCP signaling is required for the planar polarization of epithelial cells, which occurs, for instance, during hair orientation and gastrulation in vertebrates. Both pathways have been studied intensively in the past years. However, it still remains unresolved whether additional components are required at the receptor complex. Here we identify the Drosophila homolog of the mammalian prorenin receptor (dPRR) as a conserved modulator of canonical Wnt/beta-cat and Fz/PCP signaling. We show that dPRR depletion affects Wg target genes in cultured cells and in vivo. PRR is required for epithelial planar polarity in Drosophila and for convergent extension movements in Xenopus gastrulae. Furthermore, dPRR binds to Fz and Fz2 receptors. In summary, our data suggest that dPRR has an evolutionarily conserved role at the receptor level for activation of canonical and noncanonical Wnt/Fz signaling pathways.
Related JoVE Video
Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2.
PLoS ONE
PUBLISHED: 03-24-2010
Show Abstract
Hide Abstract
Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.
Related JoVE Video
On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes.
Development
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
The regulation of body axis specification in the common ancestor of bilaterians remains controversial. BMP signaling appears to be an ancient program for patterning the secondary, or dorsoventral, body axis, but any such program for the primary, or anteroposterior, body axis is debated. Recent work in invertebrates indicates that posterior Wnt/beta-catenin signaling is such a mechanism and that it evolutionarily predates the cnidarian-bilaterian split. Here, I argue that a Cartesian coordinate system of positional information set up by gradients of perpendicular Wnt and BMP signaling is conserved in bilaterians, orchestrates body axis patterning and contributes to both the relative invariance and diversity of body forms.
Related JoVE Video
Regulation of Lrp6 phosphorylation.
Cell. Mol. Life Sci.
PUBLISHED: 02-19-2010
Show Abstract
Hide Abstract
The Wnt/beta-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to beta-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to beta-catenin stabilization.
Related JoVE Video
Emerging links between CDK cell cycle regulators and Wnt signaling.
Trends Cell Biol.
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
Wnt/beta-catenin signaling controls many aspects of cell behavior throughout development and in adults. One of its best-known and cancer-relevant functions is to stimulate cell proliferation. Recent work has implicated Wnt components in regulating mitotic events, suggesting that the cell cycle and Wnt signaling are directly linked. This concept has now been substantially strengthened with the finding that the mitotic CDK14/cyclin Y complex promotes Wnt signaling through phosphorylation of the LRP6 co-receptor, a key regulatory nexus in the Wnt/beta-catenin pathway. Thus, an unexpectedly tight collaboration between the mitotic cell cycle machinery and Wnt signaling is emerging, suggesting that this pathway might orchestrate mitotic processes.
Related JoVE Video
Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction.
J. Biol. Chem.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
The beta-catenin-lymphoid enhancer factor (LEF) protein complex is the key mediator of canonical Wnt signaling and initiates target gene transcription upon ligand stimulation. In addition to beta-catenin and LEF themselves, many other proteins have been identified as necessary cofactors. Here we report that the evolutionally conserved splicing factor and transcriptional co-regulator, SKIP/SNW/NcoA62, forms a ternary complex with LEF1 and HDAC1 and mediates the repression of target genes. Loss-of-function studies showed that SKIP is obligatory for Wnt signaling-induced target gene transactivation, suggesting an important role of SKIP in the canonical Wnt signaling. Consistent with its involvement in beta-catenin signaling, the C-terminally truncated forms of SKIP are able to stabilize beta-catenin and enhance Wnt signaling. In Xenopus embryos, both overexpression and knockdown of Skip lead to reduced neural crest induction, consistent with down-regulated Wnt signaling in both cases. Our results indicate that SKIP is a novel component of the beta-catenin transcriptional complex.
Related JoVE Video
Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling.
Science
PUBLISHED: 01-23-2010
Show Abstract
Hide Abstract
Wnt/beta-catenin signaling is important in stem cell biology, embryonic development, and disease, including cancer. However, the mechanism of Wnt signal transmission, notably how the receptors are activated, remains incompletely understood. We found that the prorenin receptor (PRR) is a component of the Wnt receptor complex. PRR functions in a renin-independent manner as an adaptor between Wnt receptors and the vacuolar H+-adenosine triphosphatase (V-ATPase) complex. Moreover, PRR and V-ATPase were required to mediate Wnt signaling during antero-posterior patterning of Xenopus early central nervous system development. The results reveal an unsuspected role for the prorenin receptor, V-ATPase activity, and acidification during Wnt/beta-catenin signaling.
Related JoVE Video
Cell cycle control of wnt receptor activation.
Dev. Cell
PUBLISHED: 08-20-2009
Show Abstract
Hide Abstract
Low-density lipoprotein receptor related proteins 5 and 6 (LRP5/6) are transmembrane receptors that initiate Wnt/beta-catenin signaling. Phosphorylation of PPPSP motifs in the LRP6 cytoplasmic domain is crucial for signal transduction. Using a kinome-wide RNAi screen, we show that PPPSP phosphorylation requires the Drosophila Cyclin-dependent kinase (CDK) L63. L63 and its vertebrate homolog PFTK are regulated by the membrane tethered G2/M Cyclin, Cyclin Y, which mediates binding to and phosphorylation of LRP6. As a consequence, LRP6 phosphorylation and Wnt/beta-catenin signaling are under cell cycle control and peak at G2/M phase; knockdown of the mitotic regulator CDC25/string, which results in G2/M arrest, enhances Wnt signaling in a Cyclin Y-dependent manner. In Xenopus embryos, Cyclin Y is required in vivo for LRP6 phosphorylation, maternal Wnt signaling, and Wnt-dependent anteroposterior embryonic patterning. G2/M priming of LRP6 by a Cyclin/CDK complex introduces an unexpected new layer of regulation of Wnt signaling.
Related JoVE Video
Active DNA demethylation and DNA repair.
Differentiation
PUBLISHED: 03-14-2009
Show Abstract
Hide Abstract
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic "active" DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that "pruning" of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.
Related JoVE Video
Unc5B interacts with FLRT3 and Rnd1 to modulate cell adhesion in Xenopus embryos.
PLoS ONE
PUBLISHED: 03-02-2009
Show Abstract
Hide Abstract
The FLRT family of transmembrane proteins has been implicated in the regulation of FGF signalling, neurite outgrowth, homotypic cell sorting and cadherin-mediated adhesion. In an expression screen we identified the Netrin receptors Unc5B and Unc5D as high-affinity FLRT3 interactors. Upon overexpression, Unc5B phenocopies FLRT3 and both proteins synergize in inducing cell deadhesion in Xenopus embryos. Morpholino knock-downs of Unc5B and FLRT3 synergistically affect Xenopus development and induce morphogenetic defects. The small GTPase Rnd1, which transmits FLRT3 deadhesion activity, physically and functionally interacts with Unc5B, and mediates its effect on cell adhesion. The results suggest that FLRT3, Unc5B and Rnd1 proteins interact to modulate cell adhesion in early Xenopus development.
Related JoVE Video
The complex world of WNT receptor signalling.
Nat. Rev. Mol. Cell Biol.
Show Abstract
Hide Abstract
30 years after the identification of WNTs, their signal transduction has become increasingly complex, with the discovery of more than 15 receptors and co-receptors in seven protein families. The recent discovery of three receptor classes for the R-spondin family of WNT agonists further adds to this complexity. What emerges is an intricate network of receptors that form higher-order ligand-receptor complexes routing downstream signalling. These are regulated both extracellularly by agonists such as R-spondin and intracellularly by post-translational modifications such as phosphorylation, proteolytic processing and endocytosis.
Related JoVE Video
GADD45G functions in male sex determination by promoting p38 signaling and Sry expression.
Dev. Cell
Show Abstract
Hide Abstract
Male sex determination in mammals is induced by Sry, a gene whose regulation is poorly understood. Here we show that mice mutant for the stress-response gene Gadd45g display complete male-to-female sex reversal. Gadd45g and Sry have a strikingly similar expression pattern in the genital ridge, and they are coexpressed in gonadal somatic cells. In Gadd45g mutants, Sry expression is delayed and reduced, and yet Sry seemed to remain poised for expression, because its promoter is demethylated on schedule and is occupied by active histone marks. Instead, p38 MAPK signaling is impaired in Gadd45g mutants. Moreover, the transcription factor GATA4, which is required for Sry expression, binds to the Sry promoter in vivo in a MAPK-dependent manner. The results suggest that a signaling cascade, involving GADD45G ? p38 MAPK ? GATA4 ? SRY, regulates male sex determination.
Related JoVE Video
Dkk3 is a component of the genetic circuitry regulating aldosterone biosynthesis in the adrenal cortex.
Hum. Mol. Genet.
Show Abstract
Hide Abstract
Primary aldosteronism (PA, autonomous aldosterone production from the adrenal cortex) causes the most common form of secondary arterial hypertension (HT), which is also the most common curable form of HT. Recent studies have highlighted an important role of mutations in genes encoding potassium channels in the pathogenesis of PA, both in human disease and in animal models. Here, we have exploited the unique features of the hyperaldosteronemic phenotype of Kcnk3 null mice, which is dependent on sexual hormones, to identify genes whose expression is modulated in the adrenal gland according to the dynamic hyperaldosteronemic phenotype of those animals. Genetic inactivation of one of the genes identified by our strategy, dickkopf-3 (Dkk3), whose expression is increased by calcium influx into adrenocortical cells, in the Kcnk3 null background results in the extension of the low-renin, potassium-rich diet insensitive hyperaldosteronemic phenotype to the male sex. Compound Kcnk3/Dkk3 animals display an increased expression of Cyp11b2, the rate-limiting enzyme for aldosterone biosynthesis in the adrenal zona glomerulosa (ZG). Our data show that Dkk3 can act as a modifier gene in a mouse model for altered potassium channel function and suggest its potential involvement in human PA syndromes.
Related JoVE Video
Identification of RARRES1 as a core regulator in liver fibrosis.
J. Mol. Med.
Show Abstract
Hide Abstract
Genetic factors contribute to progression and modulation of hepatic fibrosis. High throughput genomics/transcriptomics approaches aiming at identifying key regulators of fibrosis development are tainted with the difficulty of separating essential biological "driver" from modifier genes. We applied a comparative transcriptomics approach and investigated fibrosis development in different organs to identify overlapping expression changes, since these genes may be part of core pathways in fibrosis development. Gene expression was analysed on publicly available microarray data from liver, lung and kidney fibrosis. RARRES1, AGER and S100A2 were differentially regulated in all fibrosis experiments. RARRES1 was extensively analysed by means of advanced bioinformatics analyses and functional studies. Microarray and Western Blot analysis of a standard liver fibrosis model (CCl(4)) demonstrated an early induction of RARRES1 mRNA and protein expression. In addition, quantitative RT-PCR in tissue samples from patients with advanced liver fibrosis showed higher expression as compared to non-fibrotic biopsies. Microarray analysis of RARRES1 overexpressing cells identified an enrichment of a major signature associated with fibrosis. Furthermore, RARRES1 expression increased during in vitro activation of hepatic stellate cells. To further verify the pro-fibrogenic role across organs, we demonstrated an increase in RARRES1 expression in a rat lung fibrosis model induced by adenoviral TGF-?1 induction. We have performed a comparative transcriptomics analysis in order to identify core pathways of liver fibrogenesis, confirmed a candidate gene and enlightened the up- and downstream mechanisms of its action leading to fibrosis across organs and species.
Related JoVE Video
Mitotic and mitogenic Wnt signalling.
EMBO J.
Show Abstract
Hide Abstract
Canonical Wnt signalling plays an important role in development, tissue homeostasis, and cancer. At the cellular level, canonical Wnt signalling acts by regulating cell fate, cell growth, and cell proliferation. With regard to proliferation, there is increasing evidence for a complex interaction between canonical Wnt signalling and the cell cycle. Mitogenic Wnt signalling regulates cell proliferation by promoting G1 phase. In mitosis, components of the Wnt signalling cascade function directly in spindle formation. Moreover, Wnt signalling is strongly activated in mitosis, suggesting that mitotic Wnt signalling plays an important role to orchestrate a cell division program. Here, we review the complex interplay between Wnt signalling and the cell cycle.
Related JoVE Video
Active DNA demethylation by Gadd45 and DNA repair.
Trends Cell Biol.
Show Abstract
Hide Abstract
How DNA methylation patterns are established, maintained and remodeled is incompletely understood, however, it has become clear that DNA methylation is reversible and dynamic as a result of enzymatic DNA demethylation. Several different mechanisms that may account for demethylation have recently been put forward and all seem to involve DNA repair. Here, we review DNA demethylation mediated by multifunctional growth arrest and DNA damage 45 (Gadd45) protein family members which mediate DNA demethylation during cell differentiation and stress response. Gadd45 recruits nucleotide and/or base excision repair factors to gene-specific loci and acts as an adapter between repair factors and chromatin, thereby creating a nexus between epigenetics and DNA repair.
Related JoVE Video
Dickkopf-3, an immune modulator in peripheral CD8 T-cell tolerance.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
In healthy individuals, T cells react against incoming pathogens, but remain tolerant to self-antigens, thereby preventing autoimmune reactions. CD4 regulatory T cells are major contributors in induction and maintenance of peripheral tolerance, but a regulatory role has been also reported for several subsets of CD8 T cells. To determine the molecular basis of peripheral CD8 T-cell tolerance, we exploited a double transgenic mouse model in which CD8 T cells are neonatally tolerized following interaction with a parenchymal self-antigen. These tolerant CD8 T cells have regulatory capacity and can suppress T cells in an antigen-specific manner during adulthood. Dickkopf-3 (DKK3) was found to be expressed in the tolerant CD8 T cells and to be essential for the observed CD8 T-cell tolerance. In vitro, genetic deletion of DKK3 or blocking with antibodies restored CD8 T-cell proliferation and IL-2 production in response to the tolerizing self-antigen. Moreover, exogenous DKK3 reduced CD8 T-cell reactivity. In vivo, abrogation of DKK3 function reversed tolerance, leading to eradication of tumors expressing the target antigen and to rejection of autologous skin grafts. Thus, our findings define DKK3 as a immune modulator with a crucial role for CD8 T-cell tolerance.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.