JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
CTLA-4 and PD-L1 Checkpoint Blockade Enhances Oncolytic Measles Virus Therapy.
Mol. Ther.
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
We hypothesized that the combination of oncolytic virotherapy with immune checkpoint modulators would reduce tumor burden by direct cell lysis and stimulate antitumor immunity. In this study, we have generated attenuated Measles virus (MV) vectors encoding antibodies against CTLA-4 and PD-L1 (MV-aCTLA-4 and MV-aPD-L1). We characterized the vectors in terms of growth kinetics, antibody expression, and cytotoxicity in vitro. Immunotherapeutic effects were assessed in a newly established, fully immunocompetent murine model of malignant melanoma, B16-CD20. Analyses of tumor-infiltrating lymphocytes and restimulation experiments indicated a favorable immune profile after MV-mediated checkpoint modulation. Therapeutic benefits in terms of delayed tumor progression and prolonged median overall survival were observed for animals treated with vectors encoding anti-CTLA-4 and anti-PD-L1, respectively. Combining systemic administration of antibodies with MV treatment also improved therapeutic outcome. In vivo oncolytic efficacy against human tumors was studied in melanoma xenografts. MV-aCTLA-4 and MV-aPD-L1 were equally efficient as parental MV in this model, with high rates of complete tumor remission (> 80%). Furthermore, we could demonstrate lysis of tumor cells and transgene expression in primary tissue from melanoma patients. The current results suggest rapid translation of combining immune checkpoint modulation with oncolytic viruses into clinical application.
Related JoVE Video
Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.
Int. J. Cancer
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFN? secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Linear amplification mediated PCR--localization of genetic elements and characterization of unknown flanking DNA.
J Vis Exp
PUBLISHED: 07-08-2014
Show Abstract
Hide Abstract
Linear-amplification mediated PCR (LAM-PCR) has been developed to study hematopoiesis in gene corrected cells of patients treated by gene therapy with integrating vector systems. Due to the stable integration of retroviral vectors, integration sites can be used to study the clonal fate of individual cells and their progeny. LAM- PCR for the first time provided evidence that leukemia in gene therapy treated patients originated from provirus induced overexpression of a neighboring proto-oncogene. The high sensitivity and specificity of LAM-PCR compared to existing methods like inverse PCR and ligation mediated (LM)-PCR is achieved by an initial preamplification step (linear PCR of 100 cycles) using biotinylated vector specific primers which allow subsequent reaction steps to be carried out on solid phase (magnetic beads). LAM-PCR is currently the most sensitive method available to identify unknown DNA which is located in the proximity of known DNA. Recently, a variant of LAM-PCR has been developed that circumvents restriction digest thus abrogating retrieval bias of integration sites and enables a comprehensive analysis of provirus locations in host genomes. The following protocol explains step-by-step the amplification of both 3'- and 5'- sequences adjacent to the integrated lentiviral vector.
Related JoVE Video
Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease.
Hum. Gene Ther.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
Standard integration-proficient lentiviral vectors (IPLVs) are effective at much lower doses than other vector systems and have shown promise for gene therapy of Parkinson's disease (PD). Their main drawback is the risk of insertional mutagenesis. The novel biosafety-enhanced integration-deficient lentiviral vectors (IDLVs) may offer a significant enhancement in biosafety, but have not been previously tested in a model of a major disease. We have assessed biosafety and transduction efficiency of IDLVs in a rat model of PD, using IPLVs as a reference. Genomic insertion of lentivectors injected into the lesioned striatum was studied by linear amplification-mediated polymerase chain reaction (PCR), followed by deep sequencing and insertion site analysis, demonstrating lack of significant IDLV integration. Reporter gene expression studies showed efficient, long-lived, and transcriptionally targeted expression from IDLVs injected ahead of lesioning in the rat striatum, although at somewhat lower expression levels than from IPLVs. Transgenic human glial cell line-derived neurotrophic factor (hGDNF) expression from IDLVs was used for a long-term investigation of lentivector-mediated, transcriptionally targeted neuroprotection in this PD rat model. Vectors were injected before striatal lesioning, and the results showed improvements in nigral dopaminergic neuron survival and behavioral tests regardless of lentiviral integration proficiency, although they confirmed lower expression levels of hGDNF from IDLVs. These data demonstrate the effectiveness of IDLVs in a model of a major disease and indicate that these vectors could provide long-term PD treatment at low dose, combining efficacy and biosafety for targeted central nervous system applications.
Related JoVE Video
Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing.
Nature
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.
Related JoVE Video
Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity.
Sci Transl Med
PUBLISHED: 03-14-2014
Show Abstract
Hide Abstract
Wiskott-Aldrich syndrome (WAS) is characterized by microthrombocytopenia, immunodeficiency, autoimmunity, and susceptibility to malignancies. In our hematopoietic stem cell gene therapy (GT) trial using a ?-retroviral vector, 9 of 10 patients showed sustained engraftment and correction of WAS protein (WASP) expression in lymphoid and myeloid cells and platelets. GT resulted in partial or complete resolution of immunodeficiency, autoimmunity, and bleeding diathesis. Analysis of retroviral insertion sites revealed >140,000 unambiguous integration sites and a polyclonal pattern of hematopoiesis in all patients early after GT. Seven patients developed acute leukemia [one acute myeloid leukemia (AML), four T cell acute lymphoblastic leukemia (T-ALL), and two primary T-ALL with secondary AML associated with a dominant clone with vector integration at the LMO2 (six T-ALL), MDS1 (two AML), or MN1 (one AML) locus]. Cytogenetic analysis revealed additional genetic alterations such as chromosomal translocations. This study shows that hematopoietic stem cell GT for WAS is feasible and effective, but the use of ?-retroviral vectors is associated with a substantial risk of leukemogenesis.
Related JoVE Video
Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition.
Cancer Cell
PUBLISHED: 02-13-2014
Show Abstract
Hide Abstract
Smoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children >3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant.
Related JoVE Video
Artificial riboswitches for gene expression and replication control of DNA and RNA viruses.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
Aptazymes are small, ligand-dependent self-cleaving ribozymes that function independently of transcription factors and can be customized for induction by various small molecules. Here, we introduce these artificial riboswitches for regulation of DNA and RNA viruses. We hypothesize that they represent universally applicable tools for studying viral gene functions and for applications as a safety switch for oncolytic and live vaccine viruses. Our study shows that the insertion of artificial aptazymes into the adenoviral immediate early gene E1A enables small-molecule-triggered, dose-dependent inhibition of gene expression. Aptazyme-mediated shutdown of E1A expression translates into inhibition of adenoviral genome replication, infectious particle production, and cytotoxicity/oncolysis. These results provide proof of concept for the aptazyme approach for effective control of biological outcomes in eukaryotic systems, specifically in virus infections. Importantly, we also demonstrate aptazyme-dependent regulation of measles virus fusion protein expression, translating into potent reduction of progeny infectivity and virus spread. This not only establishes functionality of aptazymes in fully cytoplasmic genetic systems, but also implicates general feasibility of this strategy for application in viruses with either DNA or RNA genomes. Our study implies that gene regulation by artificial riboswitches may be an appealing alternative to Tet- and other protein-dependent gene regulation systems, based on their small size, RNA-intrinsic mode of action, and flexibility of the inducing molecule. Future applications range from gene analysis in basic research to medicine, for example as a safety switch for new generations of efficiency-enhanced oncolytic viruses.
Related JoVE Video
Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.
Nature
PUBLISHED: 01-12-2014
Show Abstract
Hide Abstract
Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
Related JoVE Video
Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo.
Mol. Ther.
PUBLISHED: 01-05-2014
Show Abstract
Hide Abstract
Self-inactivating (SIN) lentiviral vectors (LV) have an excellent therapeutic potential as demonstrated in preclinical studies and clinical trials. However, weaker mechanisms of insertional mutagenesis could still pose a significant risk in clinical applications. Taking advantage of novel in vivo genotoxicity assays, we tested a battery of LV constructs, including some with clinically relevant designs, and found that oncogene activation by promoter insertion is the most powerful mechanism of early vector-induced oncogenesis. SIN LVs disabled in their capacity to activate oncogenes by promoter insertion were less genotoxic and induced tumors by enhancer-mediated activation of oncogenes with efficiency that was proportional to the strength of the promoter used. On the other hand, when enhancer activity was reduced by using moderate promoters, oncogenesis by inactivation of tumor suppressor gene was revealed. This mechanism becomes predominant when the enhancer activity of the internal promoter is shielded by the presence of a synthetic chromatin insulator cassette. Our data provide both mechanistic insights and quantitative readouts of vector-mediated genotoxicity, allowing a relative ranking of different vectors according to these features, and inform current and future choices of vector design with increasing biosafety.
Related JoVE Video
Safety and Liver Transduction Efficacy of rAAV5-cohPBGD in Nonhuman Primates: A Potential Therapy for Acute Intermittent Porphyria.
Hum. Gene Ther.
PUBLISHED: 09-28-2013
Show Abstract
Hide Abstract
Abstract Acute intermittent porphyria (AIP) results from haplo-insufficient activity of porphobilinogen deaminase (PBGD) and is characterized clinically by life-threatening, acute neurovisceral attacks. To date, liver transplantation is the only curative option for AIP. The aim of the present preclinical nonhuman primate study was to determine the safety and transduction efficacy of an adeno-associated viral vector encoding PBGD (recombinant AAV serotype 5-codon-optimized human porphobilinogen deaminase, rAAV5-cohPBGD) administered intravenously as part of a safety program to start a clinical study in patients with AIP. Macaques injected with either 1×10(13) or 5×10(13) vector genomes/kg of clinical-grade rAAV5-cohPBGD were monitored by standardized clinical parameters, and vector shedding was analyzed. Liver transduction efficacy, biodistribution, vector integration, and histopathology at day 30 postvector administration were determined. There was no evidence of acute toxicity, and no adverse effects were observed. The vector achieved efficient and homogenous hepatocellular transduction, reaching transgenic PBGD expression levels equivalent to 50% of the naturally expressed PBGD mRNA. No cellular immune response was detected against the human PBGD or AAV capsid proteins. Integration site analysis in transduced liver cells revealed an almost random integration pattern supporting the good safety profile of rAAV5-cohPBGD. Together, data obtained in nonhuman primates indicate that rAAV5-cohPBGD represents a safe therapy to correct the metabolic defect present in AIP patients.
Related JoVE Video
From bench to bedside: preclinical evaluation of a self-inactivating gammaretroviral vector for the gene therapy of X-linked chronic granulomatous disease.
Hum Gene Ther Clin Dev
PUBLISHED: 07-13-2013
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by impaired antimicrobial activity in phagocytic cells. As a monogenic disease affecting the hematopoietic system, CGD is amenable to gene therapy. Indeed in a phase I/II clinical trial, we demonstrated a transient resolution of bacterial and fungal infections. However, the therapeutic benefit was compromised by the occurrence of clonal dominance and malignant transformation demanding alternative vectors with equal efficacy but safety-improved features. In this work we have developed and tested a self-inactivating (SIN) gammaretroviral vector (SINfes.gp91s) containing a codon-optimized transgene (gp91(phox)) under the transcriptional control of a myeloid promoter for the gene therapy of the X-linked form of CGD (X-CGD). Gene-corrected cells protected X-CGD mice from Aspergillus fumigatus challenge at low vector copy numbers. Moreover, the SINfes.gp91s vector generates substantial amounts of superoxide in human cells transplanted into immunodeficient mice. In vitro genotoxicity assays and longitudinal high-throughput integration site analysis in transplanted mice comprising primary and secondary animals for 11 months revealed a safe integration site profile with no signs of clonal dominance.
Related JoVE Video
Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.
Science
PUBLISHED: 07-11-2013
Show Abstract
Hide Abstract
Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disease caused by arylsulfatase A (ARSA) deficiency. Patients with MLD exhibit progressive motor and cognitive impairment and die within a few years of symptom onset. We used a lentiviral vector to transfer a functional ARSA gene into hematopoietic stem cells (HSCs) from three presymptomatic patients who showed genetic, biochemical, and neurophysiological evidence of late infantile MLD. After reinfusion of the gene-corrected HSCs, the patients showed extensive and stable ARSA gene replacement, which led to high enzyme expression throughout hematopoietic lineages and in cerebrospinal fluid. Analyses of vector integrations revealed no evidence of aberrant clonal behavior. The disease did not manifest or progress in the three patients 7 to 21 months beyond the predicted age of symptom onset. These findings indicate that extensive genetic engineering of human hematopoiesis can be achieved with lentiviral vectors and that this approach may offer therapeutic benefit for MLD patients.
Related JoVE Video
Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome.
Science
PUBLISHED: 07-11-2013
Show Abstract
Hide Abstract
Wiskott-Aldrich syndrome (WAS) is an inherited immunodeficiency caused by mutations in the gene encoding WASP, a protein regulating the cytoskeleton. Hematopoietic stem/progenitor cell (HSPC) transplants can be curative, but, when matched donors are unavailable, infusion of autologous HSPCs modified ex vivo by gene therapy is an alternative approach. We used a lentiviral vector encoding functional WASP to genetically correct HSPCs from three WAS patients and reinfused the cells after a reduced-intensity conditioning regimen. All three patients showed stable engraftment of WASP-expressing cells and improvements in platelet counts, immune functions, and clinical scores. Vector integration analyses revealed highly polyclonal and multilineage haematopoiesis resulting from the gene-corrected HSPCs. Lentiviral gene therapy did not induce selection of integrations near oncogenes, and no aberrant clonal expansion was observed after 20 to 32 months. Although extended clinical observation is required to establish long-term safety, lentiviral gene therapy represents a promising treatment for WAS.
Related JoVE Video
Next-generation sequencing of cancer consensus genes in lymphoma.
Leuk. Lymphoma
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
Sensitive identification of mutations in genes related to the pathogenesis of cancer is a prerequisite for risk-stratified therapies. Next-generation sequencing (NGS) in lymphoma has revealed genetic heterogeneity which makes clinical translation challenging. We established a 454-based targeted resequencing platform for robust high-throughput sequencing from limited material of patients with lymphoma. Hotspot mutations in the most frequently mutated cancer consensus genes were amplified in a two-step multiplex-polymerase chain reation (PCR) which was optimized for homogeneous coverage of all regions of interest. We show that targeted resequencing based on NGS technologies allows highly sensitive detection of mutations and assessment of clone size. The application of this or similar techniques will help the development of genotype-specific treatment approaches in lymphoma.
Related JoVE Video
Integration-deficient lentiviral vectors expressing codon-optimized R338LhFIX restore normal hemostasis in hemophilia B mice.
Mol. Ther.
PUBLISHED: 05-26-2013
Show Abstract
Hide Abstract
Integration-deficient lentiviralvectors (IDLVs) have been shown to transduce a wide spectrum of target cells and organs in vitro and in vivo, and to maintain long-term transgene expression in non-dividing cells. However, epigenetic silencing of episomal vector genomes reduces IDLV transgene expression levels and renders these safe vectors less efficient. Here, we describe for the first time a complete correction of factor IX deficiency in hemophilia B mice by IDLVs carrying a novel, highly potent human FIX (hFIX) cDNA. A 50-fold increase in hFIXcDNA potency was achieved by combining two mechanistically independent yet synergistic strategies: a) optimization of the hFIXcDNA codon-usage to increase hFIX protein production per vector genome, and b) generation of a highly catalytic mutant hFIX protein in which the arginine residue at position 338 was substituted with leucine. The enhanced hFIX activity was not associated with liver damage or with the formation of hFIX-directed inhibitory antibodies, and rendered IDLV-treated FIX knockout mice resistant to a challenging tail-clipping assay. A novel S1 nuclease-based B1-qPCR assay showed low levels of IDLV integration in mouse liver. Overall, this study demonstrates that IDLVs carrying an improvedhFIXcDNA safely and efficiently cure hemophilia B in a mouse model.Molecular Therapy (2013); doi:10.1038/mt.2013.188.
Related JoVE Video
Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine.
Hum. Gene Ther.
PUBLISHED: 05-07-2013
Show Abstract
Hide Abstract
Oncolytic measles viruses (MV) derived from the live attenuated vaccine strain have been engineered for increased antitumor activity, and are currently under investigation in clinical phase 1 trials. Approaches with other viral vectors have shown that insertion of immunomodulatory transgenes enhances the therapeutic potency. In this study, we engineered MV for expression of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). For the first time, therapeutic efficacy and adaptive immune response in the context of MV oncolysis could be evaluated in the previously established immunocompetent murine colon adenocarcinoma model MC38cea. MC38cea cells express the human carcinoembryonic antigen (CEA), allowing for infection with retargeted MV. Intratumoral application of MV-GMCSF significantly delayed tumor progression and prolonged median overall survival compared with control virus-treated mice. Importantly, more than one-third of mice treated with MV-GMCSF showed complete tumor remission and rejected successive tumor reengraftment, demonstrating robust long-term protection. An enhanced cell-mediated tumor-specific immune response could be detected by lactate dehydrogenase assay and interferon-? enzyme-linked immunospot assay. Furthermore, MV-GMCSF treatment correlated with increased abundance of tumor-infiltrating CD3(+) lymphocytes analyzed by quantitative microscopy of tumor sections. These findings underline the potential of oncolytic, GM-CSF-expressing MV as an effective therapeutic cancer vaccine actively recruiting adaptive immune responses for enhanced therapeutic impact and tumor elimination. Thus, the treatment benefit of this combined immunovirotherapy approach has direct implications for future clinical trials.
Related JoVE Video
A largely random AAV integration profile after LPLD gene therapy.
Nat. Med.
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
The clinical application of adeno-associated virus vectors (AAVs) is limited because of concerns about AAV integration-mediated tumorigenicity. We performed integration-site analysis after AAV1-LPL(S447X) intramuscular injection in five lipoprotein lipase-deficient subjects, revealing random nuclear integration and hotspots in mitochondria. We conclude that AAV integration is potentially safe and that vector breakage and integration may occur from each position of the vector genome. Future viral integration-site analyses should include the mitochondrial genome.
Related JoVE Video
Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia.
Br. J. Haematol.
PUBLISHED: 04-26-2013
Show Abstract
Hide Abstract
Recurrent gene mutations contribute to the pathogenesis of chronic lymphocytic leukaemia (CLL). We developed a next-generation sequencing (NGS) platform to determine the genetic profile, intratumoural heterogeneity, and clonal structure of two independent CLL cohorts. TP53, SF3B1, and NOTCH1 were most frequently mutated (16.3%, 16.9%, 10.7%). We found evidence for subclonal mutations in 67.5% of CLL cases with mutations of cancer consensus genes. We observed selection of subclones and found initial evidence for convergent mutations in CLL. Our data suggest that assessment of (sub)clonal structure may need to be integrated into analysis of the mutational profile in CLL.
Related JoVE Video
Parallel assessment of globin lentiviral transfer in induced pluripotent stem cells and adult hematopoietic stem cells derived from the same transplanted ?-thalassemia patient.
Stem Cells
PUBLISHED: 04-21-2013
Show Abstract
Hide Abstract
A patient with ?(E)/?(0) -thalassemia major was converted to transfusion-independence 4.5 years ago by lentiviral gene transfer in hematopoietic stem cells while showing a myeloid-biased cell clone. Induced pluripotent stem cells (iPSCs) are a potential alternative source of hematopoietic stem cells. If fetal to adult globin class, switching does not occur in vivo in iPSC-derived erythroid cells, ?-globin gene transfer would be unnecessary. To investigate both vector integration skewing and the potential use of iPSCs for the treatment of thalassemia, we derived iPSCs from the thalassemia gene therapy patient and compared iPSC-derived hematopoietic cells to their natural isogenic somatic counterparts. In NSG immunodeficient mice, embryonic to fetal and a partial fetal to adult globin class switching were observed, indicating that the gene transfer is likely necessary for iPSC-based therapy of the ?-hemoglobinopathies. Lentivector integration occurred in regions of low and high genotoxicity. Surprisingly, common integration sites (CIS) were identified across those iPSCs and cells retrieved from isogenic and nonisogenic gene therapy patients with ?-thalassemia and adrenoleukodystrophy, respectively. This suggests that CIS observed in the absence of overt tumorigenesis result from nonrandom lentiviral integration rather than oncogenic in vivo selection. These findings bring the use of iPSCs closer to practicality and further clarify our interpretation of genome-wide lentivector integration.
Related JoVE Video
TALEN-based gene correction for epidermolysis bullosa.
Mol. Ther.
PUBLISHED: 04-02-2013
Show Abstract
Hide Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is characterized by a functional deficit of type VII collagen protein due to gene defects in the type VII collagen gene (COL7A1). Gene augmentation therapies are promising, but run the risk of insertional mutagenesis. To abrogate this risk, we explored the possibility of using engineered transcription activator-like effector nucleases (TALEN) for precise genome editing. We report the ability of TALEN to induce site-specific double-stranded DNA breaks (DSBs) leading to homology-directed repair (HDR) from an exogenous donor template. This process resulted in COL7A1 gene mutation correction in primary fibroblasts that were subsequently reprogrammed into inducible pluripotent stem cells and showed normal protein expression and deposition in a teratoma-based skin model in vivo. Deep sequencing-based genome-wide screening established a safety profile showing on-target activity and three off-target (OT) loci that, importantly, were at least 10?kb from a coding sequence. This study provides proof-of-concept for TALEN-mediated in situ correction of an endogenous patient-specific gene mutation and used an unbiased screen for comprehensive TALEN target mapping that will cooperatively facilitate translational application.
Related JoVE Video
Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma.
Nat. Genet.
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.
Related JoVE Video
Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer.
Nat. Methods
PUBLISHED: 01-13-2013
Show Abstract
Hide Abstract
Transposons and ?-retroviruses have been efficiently used as insertional mutagens in different tissues to identify molecular culprits of cancer. However, these systems are characterized by recurring integrations that accumulate in tumor cells and that hamper the identification of early cancer-driving events among bystander and progression-related events. We developed an insertional mutagenesis platform based on lentiviral vectors (LVVs) by which we could efficiently induce hepatocellular carcinoma (HCC) in three different mouse models. By virtue of the LVVs replication-deficient nature and broad genome-wide integration pattern, LVV-based insertional mutagenesis allowed identification of four previously unknown liver cancer-associated genes from a limited number of integrations. We validated the oncogenic potential of all the identified genes in vivo, with different levels of penetrance. The newly identified genes are likely to play a role in human cancer because they are upregulated, amplified and/or deleted in human HCCs and can predict clinical outcomes of patients.
Related JoVE Video
Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer.
Cancer Cell
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA.
Related JoVE Video
You can count on this: barcoded hematopoietic stem cells.
Cell Stem Cell
PUBLISHED: 11-08-2011
Show Abstract
Hide Abstract
Understanding how individual hematopoietic stem cells contribute to blood formation requires analysis at the single-cell level. Recently in Nature Biotechnology, Lu et al. (2011) tagged HSCs with unique molecular barcodes and used high-throughput sequencing to track their progeny after transplantation.
Related JoVE Video
Retroviral gene therapy for X-linked chronic granulomatous disease: results from phase I/II trial.
Mol. Ther.
PUBLISHED: 08-30-2011
Show Abstract
Hide Abstract
X-linked chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by a defect in the gp91(phox) gene. In an effort to treat X-CGD, we investigated the safety and efficacy of gene therapy using a retroviral vector, MT-gp91. Two X-CGD patients received autologous CD34(+) cells transduced with MT-gp91 after a conditioning regimen consisting of fludarabine and busulfan. The level of gene-marked cells was highest at day 21 (8.3 and 11.7% in peripheral blood cells) but decreased to 0.08 and 0.5%, respectively, 3 years after gene transfer. The level of functionally corrected cells, as determined by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assay, reached a peak at day 17 (6.5% patient 1 (P1) and 14.3% patient 2 (P2) of total granulocytes) and declined to 0.05% (P1) and 0.21% (P2), 3 years later. Some retroviral vectors were found to have integrated within or close to the proto-oncogenes MDS1-EVI1, PRDM16, and CCND2; however, no abnormal cell expansion or related hematological malignancy was observed. Overall, the gene transfer procedure did not produce any serious adverse effects and was able to convert a significant fraction of blood cells to biologically functional cells, albeit for a short period of time.
Related JoVE Video
Insertion sites in engrafted cells cluster within a limited repertoire of genomic areas after gammaretroviral vector gene therapy.
Mol. Ther.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
Vector-associated side effects in clinical gene therapy have provided insights into the molecular mechanisms of hematopoietic regulation in vivo. Surprisingly, many retrovirus insertion sites (RIS) present in engrafted cells have been found to cluster nonrandomly in close association with specific genes. Our data demonstrate that these genes directly influence the in vivo fate of hematopoietic cell clones. Analysis of insertions thus far has been limited to individual clinical studies. Here, we studied >7,000 insertions retrieved from various studies. More than 40% of all insertions found in engrafted gene-modified cells were clustered in the same genomic areas covering only 0.36% of the genome. Gene classification analyses displayed significant overrepresentation of genes associated with hematopoietic functions and relevance for cell growth and survival in vivo. The similarity of insertion distributions indicates that vector insertions in repopulating cells cluster in predictable patterns. Thus, insertion analyses of preclinical in vitro and murine in vivo studies as well as vector insertion repertoires in clinical trials yielded concerted results and mark a small number of interesting genomic loci and genes that warrants further investigation of the biological consequences of vector insertions.
Related JoVE Video
Correction of murine SCID-X1 by lentiviral gene therapy using a codon-optimized IL2RG gene and minimal pretransplant conditioning.
Mol. Ther.
PUBLISHED: 07-12-2011
Show Abstract
Hide Abstract
Clinical trials have demonstrated the potential of ex vivo hematopoietic stem cell gene therapy to treat X-linked severe combined immunodeficiency (SCID-X1) using ?-retroviral vectors, leading to immune system functionality in the majority of treated patients without pretransplant conditioning. The success was tempered by insertional oncogenesis in a proportion of the patients. To reduce the genotoxicity risk, a self-inactivating (SIN) lentiviral vector (LV) with improved expression of a codon optimized human interleukin-2 receptor ? gene (IL2RG) cDNA (co?c), regulated by its 1.1 kb promoter region (?cPr), was compared in efficacy to the viral spleen focus forming virus (SF) and the cellular phosphoglycerate kinase (PGK) promoters. Pretransplant conditioning of Il2rg(-/-) mice resulted in long-term reconstitution of T and B lymphocytes, normalized natural antibody titers, humoral immune responses, ConA/IL-2 stimulated spleen cell proliferation, and polyclonal T-cell receptor gene rearrangements with a clear integration preference of the SF vector for proto-oncogenes, contrary to the PGK and ?cPr vectors. We conclude that SIN lentiviral gene therapy using co?c driven by the ?cPr or PGK promoter corrects the SCID phenotype, potentially with an improved safety profile, and that low-dose conditioning proved essential for immune competence, allowing for a reduced threshold of cell numbers required.
Related JoVE Video
Distinct types of tumor-initiating cells form human colon cancer tumors and metastases.
Cell Stem Cell
PUBLISHED: 07-07-2011
Show Abstract
Hide Abstract
Human colon cancer harbors a small subfraction of tumor-initiating cells (TICs) that is assumed to be a functionally homogeneous stem-cell-like population driving tumor maintenance and metastasis formation. We found unexpected cellular heterogeneity within the TIC compartment, which contains three types of TICs. Extensively self-renewing long-term TICs (LT-TICs) maintained tumor formation in serial xenotransplants. Tumor transient amplifying cells (T-TACs) with limited or no self-renewal capacity contributed to tumor formation only in primary mice. Rare delayed contributing TICs (DC-TICs) were exclusively active in secondary or tertiary mice. Bone marrow was identified as an important reservoir of LT-TICs. Metastasis formation was almost exclusively driven by self-renewing LT-TICs. Our results demonstrate that tumor initiation, self-renewal, and metastasis formation are limited to particular subpopulations of TICs in primary human colon cancer. We identify LT-TICs as a quantifiable target for therapies aimed toward eradication of self-renewing tumorigenic and metastatic colon cancer cells.
Related JoVE Video
Stable human FIX expression after 0.9G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques.
Mol. Ther.
PUBLISHED: 05-31-2011
Show Abstract
Hide Abstract
Intrauterine gene transfer (IUGT) offers ontological advantages including immune naiveté mediating tolerance to the vector and transgenic products, and effecting a cure before development of irreversible pathology. Despite proof-of-principle in rodent models, expression efficacy with a therapeutic transgene has yet to be demonstrated in a preclinical nonhuman primate (NHP) model. We aimed to determine the efficacy of human Factor IX (hFIX) expression after adeno-associated-viral (AAV)-mediated IUGT in NHP. We injected 1.0-1.95 × 10(13) vector genomes (vg)/kg of self-complementary (sc) AAV5 and 8 with a LP1-driven hFIX transgene intravenously in 0.9G late gestation NHP fetuses, leading to widespread transduction with liver tropism. Liver-specific hFIX expression was stably maintained between 8 and 112% of normal activity in injected offspring followed up for 2-22 months. AAV8 induced higher hFIX expression (P = 0.005) and milder immune response than AAV5. Random hepatocellular integration was found with no hotspots. Transplacental spread led to low-level maternal tissue transduction, without evidence of immunotoxicity or germline transduction in maternal oocytes. A single intravenous injection of scAAV-LP1-hFIXco to NHP fetuses in late-gestation produced sustained clinically-relevant levels of hFIX with liver-specific expression and a non-neutralizing immune response. These data are encouraging for conditions where gene transfer has the potential to avert perinatal death and long-term irreversible sequelae.
Related JoVE Video
An unbiased genome-wide analysis of zinc-finger nuclease specificity.
Nat. Biotechnol.
PUBLISHED: 05-12-2011
Show Abstract
Hide Abstract
Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.
Related JoVE Video
Stem cell gene therapy for fanconi anemia: report from the 1st international Fanconi anemia gene therapy working group meeting.
Mol. Ther.
PUBLISHED: 05-03-2011
Show Abstract
Hide Abstract
Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patients own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA.
Related JoVE Video
Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk.
Hepatology
PUBLISHED: 04-27-2011
Show Abstract
Hide Abstract
Lentiviral vectors are attractive tools for liver-directed gene therapy because of their capacity for stable gene expression and the lack of preexisting immunity in most human subjects. However, the use of integrating vectors may raise some concerns about the potential risk of insertional mutagenesis. Here we investigated liver gene transfer by integrase-defective lentiviral vectors (IDLVs) containing an inactivating mutation in the integrase (D64V). Hepatocyte-targeted expression using IDLVs resulted in the sustained and robust induction of immune tolerance to both intracellular and secreted proteins, despite the reduced transgene expression levels in comparison with their integrase-competent vector counterparts. IDLV-mediated and hepatocyte-targeted coagulation factor IX (FIX) expression prevented the induction of neutralizing antibodies to FIX even after antigen rechallenge in hemophilia B mice and accounted for relatively prolonged therapeutic FIX expression levels. Upon the delivery of intracellular model antigens, hepatocyte-targeted IDLVs induced transgene-specific regulatory T cells that contributed to the observed immune tolerance. Deep sequencing of IDLV-transduced livers showed only rare genomic integrations that had no preference for gene coding regions and occurred mostly by a mechanism inconsistent with residual integrase activity.
Related JoVE Video
Clonal inventory screens uncover monoclonality following serial transplantation of MGMT P140K-transduced stem cells and dose-intense chemotherapy.
Hum. Gene Ther.
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
Gene transfer of mutant O(6)-methylguanine-DNA-methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSCs) protects hematopoiesis from alkylating agents and allows efficient in vivo selection of transduced HSCs. However, insertional mutagenesis, high regenerative stress associated with selection, and the genotoxic potential of alkylating drugs represent considerable risk factors for clinical applications of this approach. Therefore, we investigated the long-term effect of MGMT(P140K) gene transfer followed by repetitive, dose-intensive treatment with alkylating agents in a murine serial bone marrow transplant model and assessed clonality of hematopoiesis up to tertiary recipients. The substantial selection pressure resulted in almost completely transduced hematopoiesis in all cohorts. Ligation-mediated PCR and next-generation sequencing identified several repopulating clones carrying vector insertions in distinct genomic regions that were ? 9 kb of size (common integration sites). Beside polyclonal reconstitution in the majority of the mice, we also detected monoclonal or oligoclonal repopulation patterns with HSC clones showing vector insertions in the Usp10 or Tubb3 gene. Interestingly, neither Usp10, Tubb3, nor any of the genes located in common integration sites have been linked to clonal expansion in previous preclinical or clinical gene therapy trials. However, a considerable number of these genes are involved in DNA damage response and cell fate decision pathways following cytostatic drug application. Thus, in summary, our study advocates ligation-mediated PCR and next generation sequencing as an effective and reliable method to identify gene products associated with clonal survival in specific experimental settings such as chemoselection using alkylating agents.
Related JoVE Video
MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism.
Mol. Ther.
PUBLISHED: 04-05-2011
Show Abstract
Hide Abstract
Oncolytic measles viruses (MV) derived from the live attenuated vaccine strain have been engineered for increased tumor-cell specificity, and are currently under investigation in clinical trials including a phase I study for glioblastoma multiforme (GBM). Recent preclinical studies have shown that the cellular tropism of several viruses can be controlled by inserting microRNA-target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. Since neuron-specific microRNA-7 is downregulated in gliomas but highly expressed in normal brain tissue, we engineered a microRNA-sensitive virus containing target sites for microRNA-7 in the 3-untranslated region of the viral fusion gene. In presence of microRNA-7 this modification inhibits translation of envelope proteins, restricts viral spread, and progeny production. Even though highly attenuated in presence of microRNA-7, this virus retained full efficacy against glioblastoma xenografts. Furthermore, microRNA-mediated inhibition protected genetically modified mice susceptible to MV infection from a potentially lethal intracerebral challenge. Importantly, endogenous microRNA-7 expression in primary human brain resections tightly restricted replication and spread of microRNA-sensitive virus. This is proof-of-concept that tropism restriction by tissue-specific microRNAs can be adapted to oncolytic MV to regulate viral replication and gene expression to maximize tumor specificity without compromising oncolytic efficacy.
Related JoVE Video
Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection.
Blood
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
A recent clinical trial for adrenoleukodystrophy (ALD) showed the efficacy and safety of lentiviral vector (LV) gene transfer in hematopoietic stem progenitor cells. However, several common insertion sites (CIS) were found in patients cells, suggesting that LV integrations conferred a selective advantage. We performed high-throughput LV integration site analysis on human hematopoietic stem progenitor cells engrafted in immunodeficient mice and found the same CISs reported in patients with ALD. Strikingly, most CISs in our experimental model and in patients with ALD cluster in megabase-wide chromosomal regions of high LV integration density. Conversely, cancer-triggering integrations at CISs found in tumor cells from ?-retroviral vector-based clinical trials and oncogene-tagging screenings in mice always target a single gene and are contained in narrow genomic intervals. These findings imply that LV CISs are produced by an integration bias toward specific genomic regions rather than by oncogenic selection.
Related JoVE Video
Analyzing the number of common integration sites of viral vectors--new methods and computer programs.
PLoS ONE
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Vectors based on ?-retroviruses or lentiviruses have been shown to stably express therapeutical transgenes and effectively cure different hematological diseases. Molecular follow up of the insertional repertoire of gene corrected cells in patients and preclinical animal models revealed different integration preferences in the host genome including clusters of integrations in small genomic areas (CIS; common integrations sites). In the majority, these CIS were found in or near genes, with the potential to influence the clonal fate of the affected cell. To determine whether the observed degree of clustering is statistically compatible with an assumed standard model of spatial distribution of integrants, we have developed various methods and computer programs for ?-retroviral and lentiviral integration site distribution. In particular, we have devised and implemented mathematical and statistical approaches for comparing two experimental samples with different numbers of integration sites with respect to the propensity to form CIS as well as for the analysis of coincidences of integration sites obtained from different blood compartments. The programs and statistical tools described here are available as workspaces in R code and allow the fast detection of excessive clustering of integration sites from any retrovirally transduced sample and thus contribute to the assessment of potential treatment-related risks in preclinical and clinical retroviral gene therapy studies.
Related JoVE Video
Lentiviral vector integration profiles differ in rodent postmitotic tissues.
Mol. Ther.
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Lentiviral vectors with self-inactivating (SIN) long terminal repeats (LTRs) are promising for safe and sustained transgene expression in dividing as well as quiescent cells. As genome organization and transcription substantially differs between actively dividing and postmitotic cells in vivo, we hypothesized that genomic vector integration preferences might be distinct between these biological states. We performed integration site (IS) analyses on mouse dividing cells (fibroblasts and hematopoietic progenitor cells (HPCs)) transduced ex vivo and postmitotic cells (eye and brain) transduced in vivo. As expected, integration in dividing cells occurred preferably into gene coding regions. In contrast, postmitotic cells showed a close to random frequency of integration into genes and gene spare long interspersed nuclear elements (LINE). Our studies on the potential mechanisms responsible for the detected differences of lentiviral integration suggest that the lowered expression level of Psip1 reduce the integration frequency in vivo into gene coding regions in postmitotic cells. The motif TGGAA might represent one of the factors for preferred lentiviral integration into mouse and rat Satellite DNA. These observations are highly relevant for the correct assessment of preclinical biosafety studies, indicating that lentiviral vectors are well suited for safe and effective clinical gene transfer into postmitotic tissues.
Related JoVE Video
Long-term regulation of genetically modified primary hematopoietic cells in dogs.
Mol. Ther.
PUBLISHED: 02-15-2011
Show Abstract
Hide Abstract
We report long-term results from a large animal model of in vivo selection. Nine years ago, we transplanted two dogs (E900 and E958) with autologous marrow CD34(+) cells that had been transduced with a gammaretrovirus vector encoding a conditionally activatable derivative of the thrombopoietin receptor. Receptor activation through administration of a chemical inducer of dimerization (CID) (AP20187 or AP1903) confers a growth advantage. We previously reported responses to two 30-day intravenous (i.v.) courses of AP20187 administered within the first 8 months post-transplantation. We now report responses to 5-day subcutaneous (s.c.) courses of AP20187 or AP1903 at months 14, 90, and 93 (E900), or month 18 (E958), after transplantation. Long-term monitoring showed no rise in transduced cells in the absence of drug. Retroviral insertion site analysis showed that 4 of 6 (E958) and 5 of 12 (E900) transduced hematopoietic cell clones persisted lifelong. Both dogs were euthanized for reasons unrelated to the gene therapy treatment at 8 years 11 months (E958) and 11 years 1 month (E900) of age. Three clones from E900 remained detectable in each of two secondary recipients, one of which was treated with, and responded to, AP1903. Our results demonstrate the feasibility of safely regulating genetically engineered hematopoietic cells over many years.
Related JoVE Video
Retroviral vectors: post entry events and genomic alterations.
Viruses
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
The curative potential of retroviral vectors for somatic gene therapy has been demonstrated impressively in several clinical trials leading to sustained long-term correction of the underlying genetic defect. Preclinical studies and clinical monitoring of gene modified hematopoietic stem and progenitor cells in patients have shown that biologically relevant vector induced side effects, ranging from in vitro immortalization to clonal dominance and oncogenesis in vivo, accompany therapeutic efficiency of integrating retroviral gene transfer systems. Most importantly, it has been demonstrated that the genotoxic potential is not identical among all retroviral vector systems designed for clinical application. Large scale viral integration site determination has uncovered significant differences in the target site selection of retrovirus subfamilies influencing the propensity for inducing genetic alterations in the host genome. In this review we will summarize recent insights gained on the mechanisms of insertional mutagenesis based on intrinsic target site selection of different retrovirus families. We will also discuss examples of side effects occurring in ongoing human gene therapy trials and future prospectives in the field.
Related JoVE Video
Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell.
EMBO Mol Med
PUBLISHED: 01-17-2011
Show Abstract
Hide Abstract
The analysis of genomic distribution of retroviral vectors is a powerful tool to monitor vector-on-host effects in gene therapy (GT) trials but also provides crucial information about host-on-vector influences based on the target cell genetic and epigenetic state. We had the unique occasion to compare the insertional profile of the same therapeutic moloney murine leukemia virus (MLV) vector in the context of the adenosine deaminase-severe combined immunodeficiency (ADA-SCID) genetic background in two GT trials based on infusions of transduced mature lymphocytes (peripheral blood lymphocytes, PBL) or a single infusion of haematopoietic stem/progenitor cells (HSC). We found that vector insertions are cell-specific according to the differential expression profile of target cells, favouring, in PBL-GT, genes involved in immune system and T-cell functions/pathways as well as T-cell DNase hypersensitive sites, differently from HSC-GT. Chromatin conformations and histone modifications influenced integration preferences but we discovered that only H3K27me3 was cell-specifically disfavoured, thus representing a key epigenetic determinant of cell-type dependent insertion distribution. Our study shows that MLV vector insertional profile is cell-specific according to the genetic/chromatin state of the target cell both in vitro and in vivo in patients several years after GT.
Related JoVE Video
Retroviral vectors for gene therapy.
Future Microbiol
PUBLISHED: 11-16-2010
Show Abstract
Hide Abstract
Since their first clinical trial 20 years ago, retroviral (gretroviral and lentiviral) vectors have now been used in more than 350 gene-therapy studies. Retroviral vectors are particularly suited for gene-correction of cells due to long-term and stable expression of the transferred transgene(s), and also because little effort is required for their cloning and production. Several monogenic inherited diseases, mostly immunodeficiencies, can now be successfully treated. The occurrence of insertional mutagenesis in some studies allowed extensive analysis of integration profiles of retroviral vectors, as well as the design of lentiviral vectors with increased safety properties. These new-generation vectors will enable us to continue the successful story of gene therapy, and treat more patients and even more complex diseases.
Related JoVE Video
Stem-cell gene therapy for the Wiskott-Aldrich syndrome.
N. Engl. J. Med.
PUBLISHED: 11-12-2010
Show Abstract
Hide Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive primary immunodeficiency disorder associated with thrombocytopenia, eczema, and autoimmunity. We treated two patients who had this disorder with a transfusion of autologous, genetically modified hematopoietic stem cells (HSC). We found sustained expression of WAS protein expression in HSC, lymphoid and myeloid cells, and platelets after gene therapy. T and B cells, natural killer (NK) cells, and monocytes were functionally corrected. After treatment, the patients clinical condition markedly improved, with resolution of hemorrhagic diathesis, eczema, autoimmunity, and predisposition to severe infection. Comprehensive insertion-site analysis showed vector integration that targeted multiple genes controlling growth and immunologic responses in a persistently polyclonal hematopoiesis. (Funded by Deutsche Forschungsgemeinschaft and others; German Clinical Trials Register number, DRKS00000330.).
Related JoVE Video
Lentivirus-mediated reprogramming of somatic cells in the absence of transgenic transcription factors.
Mol. Ther.
PUBLISHED: 10-26-2010
Show Abstract
Hide Abstract
Retroviral vectors remain the most efficient and widely applied system for induction of pluripotency. However, mutagenic effects have been documented in both laboratory and clinical gene therapy studies, principally as a result of dysregulated host gene expression in the proximity of defined integration sites. Here, we report that cells with characteristics of pluripotent stem cells can be produced from normal human fibroblasts in the absence of reprogramming transcription factors (TFs) during lentiviral (LV) vector-mediated gene transfer. This occurred via induced alterations in host gene and microRNA (miRNA) expression and detrimental changes in karyotype. These findings demonstrate that vector-induced genotoxicity may alone play a role in somatic cell reprogramming derivation and urges caution when using integrating vectors in this setting. Clearer understanding of this process may additionally reveal novel insights into reprogramming pathways.
Related JoVE Video
High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion.
PLoS ONE
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and pyrosequencing to build a genome-wide, high-definition map of retroviral integration sites in the genome of peripheral blood T cells from two different donors and used gene expression profiling and bioinformatics to associate integration clusters to transcriptional activity and to genetic and epigenetic features of the T cell genome. Comparison with matched random controls and with integrations obtained from CD34(+) hematopoietic stem/progenitor cells showed that integration clusters occur within chromatin regions bearing epigenetic marks associated with active promoters and regulatory elements in a cell-specific fashion. Analysis of integration sites in T cells obtained ex vivo two months after infusion showed no evidence of integration-related clonal expansion or dominance, but rather loss of cells harboring integration events interfering with RNA post-transcriptional processing. The study shows that high-definition maps of retroviral integration sites are a powerful tool to analyze the fate of genetically modified T cells in patients and the biological consequences of retroviral transduction.
Related JoVE Video
Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing.
Nat Protoc
PUBLISHED: 07-08-2010
Show Abstract
Hide Abstract
High-throughput integration site profiling has become a feasible tool to assess vector biosafety and to monitor the cell fate of the gene-corrected cell population in clinical gene therapy studies. Here we report a step-by-step protocol for universal genome-wide and comprehensive integrome analysis that can be performed on >10(2)-10(3) samples of interest in parallel. This assay is composed of fast and cost-efficient non-restrictive linear amplification-mediated PCR; optimized sample preparation for pyrosequencing; and automated bioinformatic data mining, including sequence trimming, alignment to the cellular genome and further annotation. Moreover, the workflow of this large-scale assay can be adapted to any PCR-based method aiming to characterize unknown flanking DNA adjacent to a known DNA region. Thus, in combination with next-generation sequencing technologies, large-scale integrome analysis of > 4 x 10(5)-1 x 10(6) integration site sequences can be accomplished within a single week.
Related JoVE Video
International network of cancer genome projects.
, Thomas J Hudson, Warwick Anderson, Axel Artez, Anna D Barker, Cindy Bell, Rosa R Bernabé, M K Bhan, Fabien Calvo, Iiro Eerola, Daniela S Gerhard, Alan Guttmacher, Mark Guyer, Fiona M Hemsley, Jennifer L Jennings, David Kerr, Peter Klatt, Patrik Kolar, Jun Kusada, David P Lane, Frank Laplace, Lu Youyong, Gerd Nettekoven, Brad Ozenberger, Jane Peterson, T S Rao, Jacques Remacle, Alan J Schafer, Tatsuhiro Shibata, Michael R Stratton, Joseph G Vockley, Koichi Watanabe, Huanming Yang, Matthew M F Yuen, Bartha M Knoppers, Martin Bobrow, Anne Cambon-Thomsen, Lynn G Dressler, Stephanie O M Dyke, Yann Joly, Kazuto Kato, Karen L Kennedy, Pilar Nicolás, Michael J Parker, Emmanuelle Rial-Sebbag, Carlos M Romeo-Casabona, Kenna M Shaw, Susan Wallace, Georgia L Wiesner, Nikolajs Zeps, Peter Lichter, Andrew V Biankin, Christian Chabannon, Lynda Chin, Bruno Clément, Enrique De Alava, Françoise Degos, Martin L Ferguson, Peter Geary, D Neil Hayes, Amber L Johns, Arek Kasprzyk, Hidewaki Nakagawa, Robert Penny, Miguel A Piris, Rajiv Sarin, Aldo Scarpa, Marc van de Vijver, P Andrew Futreal, Hiroyuki Aburatani, Mònica Bayés, David D L Botwell, Peter J Campbell, Xavier Estivill, Sean M Grimmond, Ivo Gut, Martin Hirst, Carlos Lopez-Otin, Partha Majumder, Marco Marra, John D McPherson, Zemin Ning, Xose S Puente, Yijun Ruan, Hendrik G Stunnenberg, Harold Swerdlow, Victor E Velculescu, Richard K Wilson, Hong H Xue, Liu Yang, Paul T Spellman, Gary D Bader, Paul C Boutros, Paul Flicek, Gad Getz, Roderic Guigo, Guangwu Guo, David Haussler, Simon Heath, Tim J Hubbard, Tao Jiang, Steven M Jones, Qibin Li, Nuria López-Bigas, Ruibang Luo, Lakshmi Muthuswamy, B F Francis Ouellette, John V Pearson, Víctor Quesada, Benjamin J Raphael, Chris Sander, Terence P Speed, Lincoln D Stein, Joshua M Stuart, Jon W Teague, Yasushi Totoki, Tatsuhiko Tsunoda, Alfonso Valencia, David A Wheeler, Honglong Wu, Shancen Zhao, Guangyu Zhou, Mark Lathrop, Gilles Thomas, Teruhiko Yoshida, Myles Axton, Chris Gunter, Linda J Miller, Junjun Zhang, Syed A Haider, Jianxin Wang, Christina K Yung, Anthony Cros, Anthony Cross, Yong Liang, Saravanamuttu Gnaneshan, Jonathan Guberman, Jack Hsu, Don R C Chalmers, Karl W Hasel, Terry S H Kaan, William W Lowrance, Tohru Masui, Laura Lyman Rodriguez, Catherine Vergely, David D L Bowtell, Nicole Cloonan, Anna deFazio, James R Eshleman, Dariush Etemadmoghadam, Brooke B Gardiner, Brooke A Gardiner, James G Kench, Robert L Sutherland, Margaret A Tempero, Nicola J Waddell, Peter J Wilson, Steve Gallinger, Ming-Sound Tsao, Patricia A Shaw, Gloria M Petersen, Debabrata Mukhopadhyay, Ronald A DePinho, Sarah Thayer, Kamran Shazand, Timothy Beck, Michelle Sam, Lee Timms, Vanessa Ballin, Youyong Lu, Jiafu Ji, Xiuqing Zhang, Feng Chen, Xueda Hu, Qi Yang, Geng Tian, Lianhai Zhang, Xiaofang Xing, Xianghong Li, Zhenggang Zhu, Yingyan Yu, Jun Yu, Jörg Tost, Paul Brennan, Ivana Holcatova, David Zaridze, Alvis Brazma, Lars Egevard, Egor Prokhortchouk, Rosamonde Elizabeth Banks, Mathias Uhlén, Juris Viksna, Fredrik Ponten, Konstantin Skryabin, Ewan Birney, Ake Borg, Anne-Lise Børresen-Dale, Carlos Caldas, John A Foekens, Sancha Martin, Jorge S Reis-Filho, Andrea L Richardson, Christos Sotiriou, Giles Thoms, Laura van't Veer, Daniel Birnbaum, Hélène Blanché, Pascal Boucher, Sandrine Boyault, Jocelyne D Masson-Jacquemier, Iris Pauporté, Xavier Pivot, Anne Vincent-Salomon, Eric Tabone, Charles Theillet, Isabelle Treilleux, Paulette Bioulac-Sage, Thomas Decaens, Dominique Franco, Marta Gut, Didier Samuel, Jessica Zucman-Rossi, Roland Eils, Benedikt Brors, Jan O Korbel, Andrey Korshunov, Pablo Landgraf, Hans Lehrach, Stefan Pfister, Bernhard Radlwimmer, Guido Reifenberger, Michael D Taylor, Christof von Kalle, Partha P Majumder, Paolo Pederzoli, Rita A Lawlor, Massimo Delledonne, Alberto Bardelli, Thomas Gress, David Klimstra, Giuseppe Zamboni, Yusuke Nakamura, Satoru Miyano, Akihiro Fujimoto, Elias Campo, Silvia de Sanjosé, Emili Montserrat, Marcos Gonzalez-Díaz, Pedro Jares, Heinz Himmelbauer, Heinz Himmelbaue, Sílvia Beà, Samuel Aparicio, Douglas F Easton, Francis S Collins, Carolyn C Compton, Eric S Lander, Wylie Burke, Anthony R Green, Stanley R Hamilton, Olli P Kallioniemi, Timothy J Ley, Edison T Liu, Brandon J Wainwright.
Nature
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Related JoVE Video
Hematopoietic activity of human short-term repopulating cells in mobilized peripheral blood cell transplants is restricted to the first 5 months after transplantation.
Blood
PUBLISHED: 04-09-2010
Show Abstract
Hide Abstract
Kinetics of hematopoietic recovery driven by different types of human stem and progenitor cells after transplantation are not fully understood. Short-term repopulating cells (STRCs) dominate early hematopoiesis after transplantation. STRCs are highly enriched in adult mobilized peripheral blood compared with cord blood, but the length of their contribution to hematopoiesis remains unclear. To understand posttransplantation durability and lineage contribution of STRCs, we compared repopulation kinetics of mobilized peripheral blood (high STRC content) with cord blood transplants (low STRC content) in long-lived NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (IL2RG(-/-)) mice. This comparison demonstrates that quantitative contribution of human STRCs to hematopoiesis is restricted to the first 5 months after transplantation. The ratio of STRCs to long-term repopulating cells dramatically changes during ontogeny. This model enables to precisely determine early and late engraftment kinetics of defined human repopulating cell types and to preclinically assess the engraftment kinetics of engineered stem cell transplants.
Related JoVE Video
Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease.
Nat. Med.
PUBLISHED: 01-24-2010
Show Abstract
Hide Abstract
Gene-modified autologous hematopoietic stem cells (HSC) can provide ample clinical benefits to subjects suffering from X-linked chronic granulomatous disease (X-CGD), a rare inherited immunodeficiency characterized by recurrent, often life-threatening bacterial and fungal infections. Here we report on the molecular and cellular events observed in two young adults with X-CGD treated by gene therapy in 2004. After the initial resolution of bacterial and fungal infections, both subjects showed silencing of transgene expression due to methylation of the viral promoter, and myelodysplasia with monosomy 7 as a result of insertional activation of ecotropic viral integration site 1 (EVI1). One subject died from overwhelming sepsis 27 months after gene therapy, whereas a second subject underwent an allogeneic HSC transplantation. Our data show that forced overexpression of EVI1 in human cells disrupts normal centrosome duplication, linking EVI1 activation to the development of genomic instability, monosomy 7 and clonal progression toward myelodysplasia.
Related JoVE Video
Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy.
Science
PUBLISHED: 11-07-2009
Show Abstract
Hide Abstract
X-linked adrenoleukodystrophy (ALD) is a severe brain demyelinating disease in boys that is caused by a deficiency in ALD protein, an adenosine triphosphate-binding cassette transporter encoded by the ABCD1 gene. ALD progression can be halted by allogeneic hematopoietic cell transplantation (HCT). We initiated a gene therapy trial in two ALD patients for whom there were no matched donors. Autologous CD34+ cells were removed from the patients, genetically corrected ex vivo with a lentiviral vector encoding wild-type ABCD1, and then re-infused into the patients after they had received myeloablative treatment. Over a span of 24 to 30 months of follow-up, we detected polyclonal reconstitution, with 9 to 14% of granulocytes, monocytes, and T and B lymphocytes expressing the ALD protein. These results strongly suggest that hematopoietic stem cells were transduced in the patients. Beginning 14 to 16 months after infusion of the genetically corrected cells, progressive cerebral demyelination in the two patients stopped, a clinical outcome comparable to that achieved by allogeneic HCT. Thus, lentiviral-mediated gene therapy of hematopoietic stem cells can provide clinical benefits in ALD.
Related JoVE Video
Comprehensive genomic access to vector integration in clinical gene therapy.
Nat. Med.
PUBLISHED: 03-08-2009
Show Abstract
Hide Abstract
Retroviral vectors have induced subtle clonal skewing in many gene therapy patients and severe clonal proliferation and leukemia in some of them, emphasizing the need for comprehensive integration site analyses to assess the biosafety and genomic pharmacokinetics of vectors and clonal fate of gene-modified cells in vivo. Integration site analyses such as linear amplification-mediated PCR (LAM-PCR) require a restriction digest generating unevenly small fragments of the genome. Here we show that each restriction motif allows for identification of only a fraction of all genomic integrants, hampering the understanding and prediction of biological consequences after vector insertion. We developed a model to define genomic access to the viral integration site that provides optimal restriction motif combinations and minimizes the percentage of nonaccessible insertion loci. We introduce a new nonrestrictive LAM-PCR approach that has superior capabilities for comprehensive unbiased integration site retrieval in preclinical and clinical samples independent of restriction motifs and amplification inefficiency.
Related JoVE Video
Detection of retroviral integration sites by linear amplification-mediated PCR and tracking of individual integration clones in different samples.
Methods Mol. Biol.
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
In order to restore or to introduce a gene function integrating viral vector systems are used to genetically modify hematopoietic stem cells. The occurrence of immortalized cell clones after transduction in vitro (Blood 106:3932-3939, 2005) and clonal dominance as well as leukemia in preclinical (Nat. Med. 12:401- 409, 2006; Blood 106:2530-2533, 2005; Science 308:1171-1174, 2005; Science 296:497, 2002; Blood 107:3865-3867, 2006) and clinical (Nat. Med. 12:401-409, 2006; Science 302:415-419, 2003; J. Clin. Invest. 118:3143-3150, 2008) gene therapy trials revealed that the nondirected integration of a vector may be associated with serious side effects. By means of the linear amplification-mediated PCR (LAM-PCR) (Blood 100:2737-2743, 2002; Nat. Methods 4:1051-1057, 2007) it is possible to identify miscellaneous vector-genome junctions in one sample, each unique for one integration clone down to the single cell level. Thus this method allows to determine the clonality of a genetically modified hematopoietic repopulation as well as to sequence the vector integration sites and therefore to analyze the integration site distribution and the influence of the vector integration site on the cell fate. The recognition of the integration site sequence corresponding to a specific clone allows the tracking of an individual clone in various samples.
Related JoVE Video
Copy number determination of genetically-modified hematopoietic stem cells.
Methods Mol. Biol.
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
Human gene transfer with gammaretroviral, murine leukemia virus (MLV) based vectors has been shown to effectively insert and express transgene sequences at a level of therapeutic benefit. However, there are numerous reports of disruption of the normal cellular processes caused by the viral insertion, even of replication deficient gammaretroviral vectors. Current gammaretroviral and lentiviral vectors do not control the site of insertion into the genome, hence, the possibility of disruption of the target cell genome. Risk related to viral insertions is linked to the number of insertions of the transgene into the cellular DNA, as has been demonstrated for replication competent and replication deficient retroviruses in experiments. At high number of insertions per cell, cell transformation due to vector induced activation of proto-oncogenes is more likely to occur, in particular since more than one transforming event is needed for oncogenesis. Thus, determination of the vector copy number in bulk transduced populations, individual colony forming units, and tissue from the recipient of the transduced cells is an increasingly important safety assay and has become a standard, though not straightforward assay, since the inception of quantitative PCR.
Related JoVE Video
Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells.
Nat. Med.
PUBLISHED: 01-16-2009
Show Abstract
Hide Abstract
Gene transfer has potential as a once-only treatment that reduces viral load, preserves the immune system and avoids lifetime highly active antiretroviral therapy. This study, which is to our knowledge the first randomized, double-blind, placebo-controlled, phase 2 cell-delivered gene transfer clinical trial, was conducted in 74 HIV-1-infected adults who received a tat-vpr-specific anti-HIV ribozyme (OZ1) or placebo delivered in autologous CD34+ hematopoietic progenitor cells. There were no OZ1-related adverse events. There was no statistically significant difference in viral load between the OZ1 and placebo group at the primary end point (average at weeks 47 and 48), but time-weighted areas under the curve from weeks 40-48 and 40-100 were significantly lower in the OZ1 group. Throughout the 100 weeks, CD4+ lymphocyte counts were higher in the OZ1 group. This study indicates that cell-delivered gene transfer is safe and biologically active in individuals with HIV and can be developed as a conventional therapeutic product.
Related JoVE Video
The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy.
J. Clin. Invest.
PUBLISHED: 01-14-2009
Show Abstract
Hide Abstract
gamma-Retroviral vectors (gammaRVs), which are commonly used in gene therapy, can trigger oncogenesis by insertional mutagenesis. Here, we have dissected the contribution of vector design and viral integration site selection (ISS) to oncogenesis using an in vivo genotoxicity assay based on transplantation of vector-transduced tumor-prone mouse hematopoietic stem/progenitor cells. By swapping genetic elements between gammaRV and lentiviral vectors (LVs), we have demonstrated that transcriptionally active long terminal repeats (LTRs) are major determinants of genotoxicity even when reconstituted in LVs and that self-inactivating (SIN) LTRs enhance the safety of gammaRVs. By comparing the genotoxicity of vectors with matched active LTRs, we were able to determine that substantially greater LV integration loads are required to approach the same oncogenic risk as gammaRVs. This difference in facilitating oncogenesis is likely to be explained by the observed preferential targeting of cancer genes by gammaRVs. This integration-site bias was intrinsic to gammaRVs, as it was also observed for SIN gammaRVs that lacked genotoxicity in our model. Our findings strongly support the use of SIN viral vector platforms and show that ISS can substantially modulate genotoxicity.
Related JoVE Video
The fetal mouse is a sensitive genotoxicity model that exposes lentiviral-associated mutagenesis resulting in liver oncogenesis.
Mol. Ther.
Show Abstract
Hide Abstract
Genotoxicity models are extremely important to assess retroviral vector biosafety before gene therapy. We have developed an in utero model that demonstrates that hepatocellular carcinoma (HCC) development is restricted to mice receiving nonprimate (np) lentiviral vectors (LV) and does not occur when a primate (p) LV is used regardless of woodchuck post-translation regulatory element (WPRE) mutations to prevent truncated X gene expression. Analysis of 839 npLV and 244 pLV integrations in the liver genomes of vector-treated mice revealed clear differences between vector insertions in gene dense regions and highly expressed genes, suggestive of vector preference for insertion or clonal outgrowth. In npLV-associated clonal tumors, 56% of insertions occurred in oncogenes or genes associated with oncogenesis or tumor suppression and surprisingly, most genes examined (11/12) had reduced expression as compared with control livers and tumors. Two examples of vector-inserted genes were the Park 7 oncogene and Uvrag tumor suppressor gene. Both these genes and their known interactive partners had differential expression profiles. Interactive partners were assigned to networks specific to liver disease and HCC via ingenuity pathway analysis. The fetal mouse model not only exposes the genotoxic potential of vectors intended for gene therapy but can also reveal genes associated with liver oncogenesis.
Related JoVE Video
Chemovirotherapy of malignant melanoma with a targeted and armed oncolytic measles virus.
J. Invest. Dermatol.
Show Abstract
Hide Abstract
Effective treatment modalities for advanced melanoma are desperately needed. An innovative approach is virotherapy, in which viruses are engineered to infect cancer cells, resulting in tumor cell lysis and an amplification effect by viral replication and spread. Ideally, tumor selectivity of these oncolytic viruses is already determined during viral cell binding and entry, which has not been reported for melanoma. We engineered an oncolytic measles virus entering melanoma cells through the high molecular weight melanoma-associated antigen (HMWMAA) and proved highly specific infection and spread in melanoma cells. We further enhanced this oncolytic virus by inserting the FCU1 gene encoding the yeast-derived prodrug convertases cytosine deaminase and uracil phosphoribosyltransferase. Combination treatment with armed and retargeted MV-FCU1-?HMWMAA and the prodrug 5-fluorocytosine (5-FC) led to effective prodrug conversion to 5-fluorouracil, extensive cytotoxicity to melanoma cells, and excessive bystander killing of noninfected cells. Importantly, HMWMAA-retargeted MV showed antitumor activity in a human xenograft mouse model, which was further increased by the FCU1/5-FC prodrug activation system. Finally, we demonstrated susceptibility of melanoma skin metastasis biopsies to HMWMAA-retargeted MV. The highly selective, entry-targeted and armed oncolytic virus MV-FCU1-?HMWMAA may become a potent building block of future melanoma therapies.
Related JoVE Video
Comparative clonal analysis of reconstitution kinetics after transplantation of hematopoietic stem cells gene marked with a lentiviral SIN or a ?-retroviral LTR vector.
Exp. Hematol.
Show Abstract
Hide Abstract
Retroviral gene marking has been used successfully in preclinical and clinical transplantation settings. Highly sensitive techniques for vector insertion-site determination, such as linear amplification-mediated polymerase chain reaction (LAM-PCR) in conjunction with next-generation sequencing, have been introduced to assess the composition of gene-marked hematopoiesis at a single-cell level. Here we used these novel techniques for directly comparing clonal reconstitution kinetics in mice transplanted with bone-marrow-derived stem cells genetically marked with either a standard, spleen focus-forming virus long terminal repeat (LTR)-driven ?-retroviral, or a lentiviral self-inactivating vector containing an identical but internal spleen focus-forming virus-derived enhancer/promoter. We observed that the use of the lentiviral self-inactivating vector for gene marking was associated with a broader repertoire of differently marked hematopoietic clones. More importantly, we found a significantly higher probability of insertions in growth-promoting, clonal-dominance-associated genes in the spleen focus-forming virus LTR-driven ?-retroviral vector at later time points of analysis. Based on our data, we suggest that the combined use of LAM-PCR and next-generation sequencing represents a potent tool for the analysis of clonal reconstitution kinetics in the context of gene marking with integrated vectors. At the same time, our findings prove that the use of multiple restriction enzymes for LAM-PCR is indispensable to detect most or ideally all individual stem cell clones contributing to hematopoiesis. We have also found that techniques such as quantitative PCR can be helpful to retrospectively analyze reconstitution kinetics for individual hematopoietic stem cell clones. Finally, our results confirm the notion that marking with lentiviral self-inactivating vectors is associated with a lower risk of genotoxicity as compared with ?-retroviral LTR vectors.
Related JoVE Video
Integration of retroviral vectors.
Curr. Opin. Immunol.
Show Abstract
Hide Abstract
Retroviral vectors are unique in their ability to integrate their genome into the host genome of transduced cells. Several members of the retrovirus family show distinct pattern for preferential integration into the host genome. Despite many years of investigation, precise mechanisms of target site selection and the fundamental interplay of viral integrase and host cell proteins are still unknown. Improved methods to detect retroviral integrations genome-wide as well as recent advances on the retroviral integrase structure and integrase interacting proteins may lead to further uncover the process of retroviral target site selection. A better knowledge of these mechanisms and interactions will allow further improving safety of retroviral vectors for gene therapy by providing an opportunity to retarget retroviral integration into non-harmful genomic positions.
Related JoVE Video
Dissecting the genomic complexity underlying medulloblastoma.
Nature
Show Abstract
Hide Abstract
Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.
Related JoVE Video
Thymus-autonomous T cell development in the absence of progenitor import.
J. Exp. Med.
Show Abstract
Hide Abstract
Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell-deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2(-/-)?(c)(-/-)Kit(W/Wv) mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2(-/-)?(c)(-/-)Kit(W/Wv) hosts, ?(c)-mediated signals alone played a key role in the competition between thymus-resident and bone marrow-derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.
Related JoVE Video
Stable long-term blood formation by stem cells in murine steady-state hematopoiesis.
Stem Cells
Show Abstract
Hide Abstract
Hematopoietic stem cells (HSCs) generate all mature blood cells during the whole lifespan of an individual. However, the clonal contribution of individual HSC and progenitor cells in steady-state hematopoiesis is poorly understood. To investigate the activity of HSCs under steady-state conditions, murine HSC and progenitor cells were genetically marked in vivo by integrating lentiviral vectors (LVs) encoding green fluorescent protein (GFP). Hematopoietic contribution of individual marked clones was monitored by determination of lentiviral integration sites using highly sensitive linear amplification-mediated-polymerase chain reaction. A remarkably stable small proportion of hematopoietic cells expressed GFP in LV-injected animals for up to 24 months, indicating stable marking of murine steady-state hematopoiesis. Analysis of the lentiviral integration sites revealed that multiple hematopoietic clones with both myeloid and lymphoid differentiation potential contributed to long-term hematopoiesis. In contrast to intrafemoral vector injection, intravenous administration of LV preferentially targeted short-lived progenitor cells. Myelosuppressive treatment of mice prior to LV-injection did not affect the marking efficiency. Our study represents the first continuous analysis of clonal behavior of genetically marked hematopoietic cells in an unmanipulated system, providing evidence that multiple clones are simultaneously active in murine steady-state hematopoiesis.
Related JoVE Video
Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites.
Hum Gene Ther Methods
Show Abstract
Hide Abstract
Clonality analysis of viral vector-transduced cell populations represents a convincing approach to dissect the physiology of tissue and organ regeneration, to monitor the fate of individual gene-corrected cells in vivo, and to assess vector biosafety. With the decoding of mammalian genomes and the introduction of next-generation sequencing technologies, the demand for automated bioinformatic analysis tools that can rapidly process and annotate vector integration sites is rising. Here, we provide a publicly accessible, graphical user interface-guided automated bioinformatic high-throughput integration site analysis pipeline. Its performance and key features are illustrated on pyrosequenced linear amplification-mediated PCR products derived from one patient previously enrolled in the first lentiviral vector clinical gene therapy study. Analysis includes trimming of vector genome junctions, alignment of genomic sequence fragments to the host genome for the identification of integration sites, and the annotation of nearby genomic elements. Most importantly, clinically relevant features comprise the determination of identical integration sites with respect to different time points or cell lineages, as well as the retrieval of the most prominent cell clones and common integration sites. The resulting output is summarized in tables within a convenient spreadsheet and can be further processed by researchers without profound bioinformatic knowledge.
Related JoVE Video
Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver.
Mol. Ther.
Show Abstract
Hide Abstract
The comprehensive characterization of recombinant adeno-associated viral (rAAV) integration frequency and persistence for assessing rAAV vector biosafety in gene therapy is severely limited due to the predominance of episomal rAAV vector genomes maintained in vivo. Introducing rAAV insertional standards (rAIS), we show that linear amplification-mediated (LAM)-PCR and deep sequencing can be used for validated measurement of rAAV integration frequencies. Integration of rAAV2/1 or rAAV2/8, following intramuscular (IM) or regional intravenous (RI) administration of therapeutically relevant vector doses in nine adult non-human primates (NHP), occurs at low frequency between 10(-4) and 10(-5) both in NHP liver and muscle, but with no preference for specific genomic loci. High resolution mapping of inverted terminal repeat (ITR) breakpoints in concatemeric and integrated vector genomes reveals distinct vector recombination hotspots, including large deletions of up to 3 kb. Moreover, retrieval of integrated rAAV genomes indicated approximately threefold increase in liver compared to muscle. This molecular analysis of rAAV persistence in NHP provides a promising basis for a reliable genotoxic risk assessment of rAAV in clinical trials.
Related JoVE Video
Extensive methylation of promoter sequences silences lentiviral transgene expression during stem cell differentiation in vivo.
Mol. Ther.
Show Abstract
Hide Abstract
Lentiviral vectors (LV) are widely used to stably transfer genes into target cells investigating or treating gene functions. In addition, gene transfer into early murine embryos may be improved to efficiently generate transgenic mice. We applied lentiviral gene transfer to generate a mouse model transgenic for SET binding protein-1 (Setbp1) and enhanced green fluorescent protein (eGFP). Neither transgenic founders nor their vector-positive offspring transcribed or expressed the transgenes. Bisulfite sequencing of the internal spleen focus-forming virus (SFFV) promoter demonstrated extensive methylation of all analyzed CpGs in the transgenic mice. To analyze the impact of Setbp1 on epigenetic silencing, embryonic stem cells (ESC) were differentiated into cardiomyocytes (CM) in vitro. In contrast to human promoters in LV, virally derived promoter sequences were strongly methylated during differentiation, independent of the transgene. Moreover, the commonly used SFFV promoter (SFFVp) was highly methylated with remarkable strength and frequency during hematopoietic differentiation in vivo in LV but less in ?-retroviral (?-RV) backbones. In summary, we conclude that LV using an internal SFFVp are not suitable to generate transgenic mice or perform constitutive expression studies in differentiating cells. Choosing the appropriate promoter is also crucial to allow stable transgene expression in clinical gene therapy.
Related JoVE Video
Identity, potency, in vivo viability, and scaling up production of lentiviral vector-induced dendritic cells for melanoma immunotherapy.
Hum Gene Ther Methods
Show Abstract
Hide Abstract
SmartDCs (Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors) consist of highly viable dendritic cells (DCs) induced to differentiate with lentiviral vectors (LVs) after an overnight ex vivo transduction. Tricistronic vectors co-expressing cytokines (granulocyte-macrophage-colony stimulating factor [GM-CSF], interleukin [IL]-4) and a melanoma antigen (tyrosine related protein 2 [TRP2]) were used to transduce mouse bone marrow cells or human monocytes. Sixteen hours after transduction, the cells were dispensed in aliquots and cryopreserved for identity, potency, and safety analyses. Thawed SmartDCs readily differentiated into highly viable cells with a DC immunophenotype. Prime/boost subcutaneous administration of 1×10(6) thawed murine SmartDCs into C57BL/6 mice resulted into TRP2-specific CD8(+) T-cell responses and protection against lethal melanoma challenge. Human SmartDC-TRP2 generated with monocytes obtained from melanoma patients secreted endogenous cytokines associated with DC activation and stimulated TRP2-specific autologous T-cell expansion in vitro. Thawed human SmartDCs injected subcutaneously in NOD.Rag1(-/-).IL2r?(-/-) mice maintained DC characteristics and viability for 1 month in vivo and did not cause any signs of pathology. For development of good manufacturing practices, CD14(+) monocytes selected by magnetic-activated cell separation were transduced in a closed bag system (multiplicity of infection of 5), washed, and cryopreserved. Fifty percent of the monocytes used for transduction were recovered for cryopreservation. Thawed SmartDCs produced in two independent runs expressed the endogenous cytokines GM-CSF and IL-4, and the resulting homogeneous SmartDCs that self-differentiated in vitro contained approximately 1.5-3.0 copies of integrated LVs per cell. Thus, this method facilitates logistics, standardization, and high recovery for the generation of viable genetically reprogrammed DCs for clinical applications.
Related JoVE Video
Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome.
Am. J. Hum. Genet.
Show Abstract
Hide Abstract
Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs(?)64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96(?)) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis.
Related JoVE Video
Preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome.
Mol. Ther.
Show Abstract
Hide Abstract
Gene therapy with ex vivo-transduced hematopoietic stem/progenitor cells may represent a valid therapeutic option for monogenic immunohematological disorders such as Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency associated with thrombocytopenia. We evaluated the preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vectors (LV) encoding WAS protein (WASp). We first set up and validated a transduction protocol for CD34(+) cells derived from bone marrow (BM) or mobilized peripheral blood (MPB) using a clinical grade, highly purified LV. Robust transduction of progenitor cells was obtained in normal donors and WAS patients cells, without evidence of toxicity. To study biodistribution of human cells and exclude vector release in vivo, LV-transduced CD34(+) cells were transplanted in immunodeficient mice, showing a normal engraftment and differentiation ability towards transduced lymphoid and myeloid cells in hematopoietic tissues. Vector mobilization to host cells and transmission to germline cells of the LV were excluded by different molecular assays. Analysis of vector integrations showed polyclonal integration patterns in vitro and in human engrafted cells in vivo. In summary, this work establishes the preclinical safety and efficacy of human CD34(+) cells gene therapy for the treatment of WAS.
Related JoVE Video
Insertion site pattern: global approach by linear amplification-mediated PCR and mass sequencing.
Methods Mol. Biol.
Show Abstract
Hide Abstract
In gene therapy, viral or nonviral integrating vectors are used to deliver a corrected gene to replace the corresponding defective cellular gene. As vector delivery is (yet) commonly not targeted to a specific site in the host genome, and vector integration may lead to unwanted cellular gene deregulation, the comprehensive analysis of vector locations is a crucial approach to assess vector biosafety and to follow the fate of the gene corrected cells in vivo. The retrieved vector integration sites are unique for each transduced cell clone, thereby serving as a molecular marker and allowing to track distinct cell clones in various samples. Today, several PCR-based methods are available for the identification and characterization of unknown flanking DNA sequences (Mueller and Wold Science 246:780-786, 1989; Paruzynski et al. Nat Protoc 5:1379-1395, 2010; Schmidt et al. Nat Methods 4:1051-1057, 2007; Silver and Keerikatte J Virol 63:1924-1928, 1989). Thereof, the linear amplification-mediated PCR (LAM-PCR) proved to exhibit the highest sensitivity, allowing the detection of miscellaneous vector integration sites in one sample. The broad application spectrum and robustness of LAM-PCR has been approved by its application as a tool for the molecular follow up of gene-modified cells in preclinical and clinical gene therapy trials (Li et al. Science 296:497, 2002; Cartier et al. Science 326:818-823, 2009; Ott et al. Nat Med 12:401-409, 2006; Deichmann et al. J Clin Invest 117:2225-2232, 2007). The combination of LAM-PCR and next-generation sequencing (NGS) platforms offers the opportunity to study the clonal inventory and pharmacokinetics in clinical gene therapy studies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.