JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The role of disulfide bonds in structure and activity of chlorotoxin.
Future Med Chem
PUBLISHED: 11-19-2014
Show Abstract
Hide Abstract
Background: Chlorotoxin is a small scorpion peptide that inhibits glioma cell migration. We investigated the importance of a major component of chlorotoxin's chemical structure - four disulfide bonds - to its tertiary structure and biological function. Results: Five disulfide bond analogs of chlorotoxin were synthesized, with l-?-aminobutyric acid residues replacing each or all of the disulfide bonds. Chemical oxidation and circular dichroism experiments revealed that Cys III-VII and Cys V-VIII were essential for native structure formation. Cys I-IV and Cys II-VI were important for stability of enzymatic proteolysis but not for the inhibition of human umbilical vein endothelial cell migration. Conclusion: The disulfide bonds of chlorotoxin are important for its structure and stability and have a minor role in its activity against cell migration.
Related JoVE Video
Insights Into the Molecular Flexibility of Theta-Defensins by NMR Relaxation Analysis.
J Phys Chem B
PUBLISHED: 11-07-2014
Show Abstract
Hide Abstract
?-defensins are mammalian cyclic peptides that have antimicrobial activities and show potential as stable scaffolds for peptide-based drug design. The cyclic cystine ladder structural motif of ?-defensins has been characterized using NMR spectroscopy and is important for their structure and stability. However, the effect of the pronounced elongated topology of ?-defensins on their molecular motion is not yet understood. Studies of molecular motion by NMR relaxation measurements have been facilitated by the recent development of a semi-recombinant method for producing cyclic peptides that allows for isotopic labeling. Here we undertook a multi-field 15N NMR relaxation analysis of the anti-HIV ?-defensin, HTD-2, and interpreted the experimental data using various models of overall and internal molecular motion. We found that it was necessary to apply a model that includes internal motion to account for the variations in the experimental T1 and NOE data at different backbone amide sites in the peptide. Although an isotropic model with internal motion was the simplest model that provided a satisfactory fit with the experimental data, we cannot exclude the possibility that overall motion is anisotropic, especially considering the strikingly elongated topology of ?-defensins. The presence of flexible side chains, self-association, interactions with solvent, and internal motions are all potential contributors to the observed relaxation data. Internal motions consistent with the constraints imposed by the cyclic cystine ladder were observed in that the order parameters, S2, show that residues in the turns are more flexible than those in the ?-sheet. This study provides insights into the dynamics of ?-defensins and information that might be useful in their applications as scaffolds in drug design.
Related JoVE Video
Translational diffusion of cyclic peptides measured using pulsed-field gradient NMR.
J Phys Chem B
PUBLISHED: 09-15-2014
Show Abstract
Hide Abstract
Cyclic peptides are increasingly being recognized as valuable templates for drug discovery or design. To facilitate efforts in the structural characterization of cyclic peptides, we explore the use of pulse-field gradient experiments as a convenient and noninvasive approach for characterizing their diffusion properties in solution. We present diffusion coefficient measurements of five cyclic peptides, including dichC, SFTI-1, cVc1.1, kB1, and kB2. These peptides range in size from six to 29 amino acids and have various therapeutically interesting activities. We explore the use of internal standards, such as dioxane and acetonitrile, to evaluate the hydrodynamic radius from the diffusion coefficient, and show that 2,2-dimethyl-2-silapentane-5-sulfonic acid, a commonly used chemical shift reference, can be used as an internal standard to avoid spectral overlap issues and simplify data analysis. The experimentally measured hydrodynamic radii correlate with increasing molecular weight and in silico predictions. We further applied diffusion measurements to characterize the self-association of kB2 and showed that it forms oligomers in a concentration-dependent manner, which may be relevant to its mechanism of action. Diffusion coefficient measurements appear to have broad utility in cyclic peptide structural biology, allowing for the rapid characterization of their molecular shape in solution.
Related JoVE Video
Racemic and Quasi-Racemic X-ray Structures of Cyclic Disulfide-Rich Peptide Drug Scaffolds.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Cyclic disulfide-rich peptides have exceptional stability and are promising frameworks for drug design. We were interested in obtaining X-ray structures of these peptides to assist in drug design applications, but disulfide-rich peptides can be notoriously difficult to crystallize. To overcome this limitation, we chemically synthesized the L- and D-forms of three prototypic cyclic disulfide-rich peptides: SFTI-1 (14-mer with one disulfide bond), cVc1.1 (22-mer with two disulfide bonds), and kB1 (29-mer with three disulfide bonds) for racemic crystallization studies. Facile crystal formation occurred from a racemic mixture of each peptide, giving structures solved at resolutions from 1.25?Å to 1.9?Å. Additionally, we obtained the quasi-racemic structures of two mutants of kB1, [G6A]kB1, and [V25A]kB1, which were solved at a resolution of 1.25?Å and 2.3?Å, respectively. The racemic crystallography approach appears to have broad utility in the structural biology of cyclic peptides.
Related JoVE Video
Structural parameters modulating the cellular uptake of disulfide-rich cyclic cell-penetrating peptides: MCoTI-II and SFTI-1.
Eur J Med Chem
PUBLISHED: 05-15-2014
Show Abstract
Hide Abstract
Peptides are emerging as a new class of therapeutics due to their high potency and specificity for a range of targets, including the inhibition of protein-protein interactions. Disulfide-rich cyclic peptides, in particular, have attracted much attention in drug design due to their ultra-stable structure. Moreover, some of them have been shown to internalize into cells, which makes them potential scaffolds to deliver pharmaceutically bioactive sequences to intracellular targets. Here we examined the effects of structural modifications on the cell-penetrating properties of two disulfide-rich cyclic cell-penetrating peptides, Momordica cochinchinensis trypsin inhibitor II (MCoTI-II) and sunflower trypsin inhibitor-1 (SFTI-1). We found that the cellular uptake of MCoTI-II can be improved by increasing the overall positive charge of the native sequence. On the other hand, mutations to SFTI-1 did not significantly influence its cellular uptake, suggesting a non-specific endocytosis-dependent mechanism of cellular uptake. This study provides an understanding of the structural features affecting the internalization of MCoTI-II and SFTI-1, and hence provides a guide for the development of these disulfide-rich cyclic scaffolds into potential drug leads.
Related JoVE Video
Anticancer and toxic properties of cyclotides are dependent on phosphatidylethanolamine phospholipid targeting.
Chembiochem
PUBLISHED: 03-31-2014
Show Abstract
Hide Abstract
Cyclotides, ultrastable disulfide-rich cyclic peptides, can be engineered to bind and inhibit specific cancer targets. In addition, some cyclotides are toxic to cancer cells, though not much is known about their mechanisms of action. Here we delineated the potential mode of action of cyclotides towards cancer cells. A novel set of analogues of kalata B1 (the prototypic cyclotide) and kalata B2 and cycloviolacin O2 were examined for their membrane-binding affinity and selectivity towards cancer cells. By using solution-state NMR, surface plasmon resonance, flow cytometry and bioassays we show that cyclotides are toxic against cancer and non-cancerous cells and their toxicity correlates with their ability to target and disrupt lipid bilayers that contain phosphatidylethanolamine phospholipids. Our results suggest that the potential of cyclotides as anticancer therapeutics might best be realised by combining their amenability to epitope engineering with their ability to bind cancer cell membranes.
Related JoVE Video
Disulfide-rich macrocyclic peptides as templates in drug design.
Eur J Med Chem
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
Recently disulfide-rich head-to-tail cyclic peptides have attracted the interest of medicinal chemists owing to their exceptional thermal, chemical and enzymatic stability brought about by their constrained structures. Here we review current trends in the field of peptide-based pharmaceuticals and describe naturally occurring cyclic disulfide-rich peptide scaffolds, discussing their pharmaceutically attractive properties and benefits. We describe how we can utilise these stable frameworks to graft and/or engineer pharmaceutically interesting epitopes to increase their selectivity and bioactivity, opening up new possibilities for addressing 'difficult' pharmaceutical targets.
Related JoVE Video
Specific interaction to PIP2 increases the kinetic rate of membrane binding of VILIPs, a subfamily of Neuronal Calcium Sensors (NCS) proteins.
Biochim. Biophys. Acta
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties. Results show that in the presence of calcium, N-myristoylation significantly increases the kinetic rate of VILIP adsorption to the membrane. Additionally, the proteins bind to negatively charged phospholipids independently of the conjugated myristate moiety. Besides the regulatory effect of calcium on the rate of binding presumably due to exposure of the myristoyl moiety ascribed to their putative 'calcium-myristoyl switch', VILIP-1 and -3 also engage specific interactions with biomimetic membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2). The presence of PIP2 increases the membrane association rates of both VILIPs. Taken together, these results show the major kinetic role of N-myristoylation for membrane binding, and highlight the critical role of specific phosphoinositide interactions for membrane association of members of the VILIP family.
Related JoVE Video
The cyclic cystine ladder of theta-defensins as a stable, bifunctional scaffold: A proof-of-concept study using the integrin-binding RGD motif.
Chembiochem
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
Peptides have the specificity and size required to target the protein-protein interactions involved in many diseases. Some cyclic peptides have been utilised as scaffolds for peptide drugs because of their stability; however, other cyclic peptide scaffolds remain to be explored. ?-Defensins are cyclic peptides from mammals; they are characterised by a cyclic cystine ladder motif and have low haemolytic and cytotoxic activity. Here we demonstrate the potential of the cyclic cystine ladder as a scaffold for peptide drug design by introducing the integrin-binding Arg-Gly-Asp (RGD) motif into the ?-defensin RTD-1. The most active analogue had an IC50 of 18 nM for the ?v ?3 integrin as well as high serum stability, thus demonstrating that a desired bioactivity can be imparted to the cyclic cystine ladder. This study highlights how ?-defensins can provide a stable and conformationally restrained scaffold for bioactive epitopes in a ?-strand or turn conformation. Furthermore, the symmetry of the cyclic cystine ladder presents the opportunity to design peptides with dual bioactive epitopes to increase activity and specificity.
Related JoVE Video
Comparison of VILIP-1 and VILIP-3 binding to phospholipid monolayers.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The neuronal calcium sensor proteins Visinin-like Proteins 1 (VILIP-1) and 3 (VILIP-3) are effectors of guanylyl cyclase and acetyl choline receptors, and transduce calcium signals in the brain. The "calcium-myristoyl" switch, which involves a post-translationally added myristoyl moiety and calcium binding, is thought to regulate their membrane binding capacity and therefore, play a critical role in their mechanism of action. In the present study, we investigated the effect of membrane composition and solvent conditions on the membrane binding mechanisms of both VILIPs using lipid monolayers at the air/buffer interface. Results based on comparison of the adsorption kinetics of the myristoylated and non-myristoylated proteins confirm the pivotal role of calcium and the exposed myristol moiety for sustaining the membrane-bound state of both VILIPs. However, we also observed binding of both VILIP proteins in the absence of calcium and/or myristoyl conjugation. We propose a two-stage membrane binding mechanism for VILIP-1 and VILIP-3 whereby the proteins are initially attracted to the membrane surface by electrostatic interactions and possibly by specific interactions with highly negatively charged lipids head groups. The extrusion of the conjugated myristoyl group, and the subsequent anchoring in the membrane constitutes the second stage of the binding mechanism, and ensures the sustained membrane-bound form of these proteins.
Related JoVE Video
Molecular Grafting onto a Stable Framework Yields Novel Cyclic Peptides for the Treatment of Multiple Sclerosis.
ACS Chem. Biol.
PUBLISHED: 11-07-2013
Show Abstract
Hide Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) and is characterized by the destruction of myelin and axons leading to progressive disability. Peptide epitopes from CNS proteins, such as myelin oligodendrocyte glycoprotein (MOG), possess promising immunoregulatory potential for treating MS; however, their instability and poor bioavailability is a major impediment for their use clinically. To overcome this problem, we used molecular grafting to incorporate peptide sequences from the MOG35-55 epitope onto a cyclotide, which is a macrocyclic peptide scaffold that has been shown to be intrinsically stable. Using this approach, we designed novel cyclic peptides that retained the structure and stability of the parent scaffold. One of the grafted peptides, MOG3, displayed potent ability to prevent disease development in a mouse model of MS. These results demonstrate the potential of bioengineered cyclic peptides for the treatment of MS.
Related JoVE Video
DMAN: a Java tool for analysis of multi-well differential scanning fluorimetry experiments.
Bioinformatics
PUBLISHED: 11-30-2011
Show Abstract
Hide Abstract
Differential scanning fluorimetry (DSF) is a rapid technique that can be used in structural biology to study protein-ligand interactions. We have developed DMAN, a novel tool to analyse multi-well plate data obtained in DSF experiments. DMAN is easy to install and provides a user-friendly interface. Multi-well plate layouts can be designed by the user and experimental data can be annotated and analysed by DMAN according to the specified plate layout. Statistical tests for significance are performed automatically, and graphical tools are also provided to assist in data analysis. The modular concept of this software will allow easy development of other multi-well plate analysis applications in the future.
Related JoVE Video
Promiscuity of carbonic anhydrase II. Unexpected ester hydrolysis of carbohydrate-based sulfamate inhibitors.
J. Am. Chem. Soc.
PUBLISHED: 10-19-2011
Show Abstract
Hide Abstract
Carbonic anhydrases (CAs) are enzymes whose endogenous reaction is the reversible hydration of CO(2) to give HCO(3)(-) and a proton. CA are also known to exhibit weak and promiscuous esterase activity toward activated esters. Here, we report a series of findings obtained with a set of CA inhibitors that showed quite unexpectedly that the compounds were both inhibitors of CO(2) hydration and substrates for the esterase activity of CA. The compounds comprised a monosaccharide core with the C-6 primary hydroxyl group derivatized as a sulfamate (for CA recognition). The remaining four sugar hydroxyl groups were acylated. Using protein X-ray crystallography, the crystal structures of human CA II in complex with four of the sulfamate inhibitors were obtained. As expected, the four structures displayed the canonical CA protein-sulfamate interactions. Unexpectedly, a free hydroxyl group was observed at the anomeric center (C-1) rather than the parent C-1 acyl group. In addition, this hydroxyl group is observed axial to the carbohydrate ring while in the parent structure it is equatorial. A mechanism is proposed that accounts for this inversion of stereochemistry. For three of the inhibitors, the acyl groups at C-2 or at C-2 and C-3 were also absent with hydroxyl groups observed in their place and retention of stereochemistry. With the use of electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry (ESI-FTICR-MS), we observed directly the sequential loss of all four acyl groups from one of the carbohydrate-based sulfamates. For this compound, the inhibitor and substrate binding mode were further analyzed using free energy calculations. These calculations suggested that the parent compound binds almost exclusively as a substrate. To conclude, we have demonstrated that acylated carbohydrate-based sulfamates are simultaneously inhibitor and substrate of human CA II. Our results suggest that, initially, the substrate binding mode dominates, but following hydrolysis, the ligand can also bind as a pure inhibitor thereby competing with the substrate binding mode.
Related JoVE Video
Hookworm SCP/TAPS protein structure--A key to understanding host-parasite interactions and developing new interventions.
Biotechnol. Adv.
PUBLISHED: 09-05-2011
Show Abstract
Hide Abstract
SCP/TAPS proteins are a diverse family of molecules in eukaryotes, including parasites. Despite their abundant occurrence in parasite secretomes, very little is known about their functions in parasitic nematodes, including blood-feeding hookworms. Current information indicates that SCP/TAPS proteins (called Ancylostoma-secreted proteins, ASPs) of the canine hookworm, Ancylostoma caninum, represent at least three distinct groups of proteins. This information, combined with comparative modelling, indicates that all known ASPs have an equatorial groove that binds extended structures, such as peptides or glycans. To elucidate structure-function relationships, we explored the three-dimensional crystal structure of an ASP (called Ac-ASP-7), which is highly up-regulated in expression in the transition of A. caninum larvae from a free-living to a parasitic stage. The topology of the N-terminal domain is consistent with pathogenesis-related proteins, and the C-terminal extension that resembles the fold of the Hinge domain. By anomalous diffraction, we identified a new metal binding site in the C-terminal extension of the protein. Ac-ASP-7 is in a monomer-dimer equilibrium, and crystal-packing analysis identified a dimeric structure which might resemble the homo-dimer in solution. The dimer interaction interface includes a novel binding site for divalent metal ions, and is proposed to serve as a binding site for proteins involved in the parasite-host interplay at the molecular level. Understanding this interplay and the integration of structural and functional data could lead to the design of new approaches for the control of parasitic diseases, with biotechnological outcomes.
Related JoVE Video
Divalent cations and redox conditions regulate the molecular structure and function of visinin-like protein-1.
PLoS ONE
PUBLISHED: 08-05-2011
Show Abstract
Hide Abstract
The NCS protein Visinin-like Protein 1 (VILIP-1) transduces calcium signals in the brain and serves as an effector of the non-retinal receptor guanylyl cyclases (GCs) GC-A and GC-B, and nicotinic acetyl choline receptors (nAchR). Analysis of the quaternary structure of VILIP-1 in solution reveals the existence of monomeric and dimeric species, the relative contents of which are affected but not exclusively regulated by divalent metal ions and Redox conditions. Using small-angle X-ray scattering, we have investigated the low resolution structure of the calcium-bound VILIP-1 dimer under reducing conditions. Scattering profiles for samples with high monomeric and dimeric contents have been obtained. The dimerization interface involves residues from EF-hand regions EF3 and EF4.Using monolayer adsorption experiments, we show that myristoylated and unmyristoylated VILIP-1 can bind lipid membranes. The presence of calcium only marginally improves binding of the protein to the monolayer, suggesting that charged residues at the protein surface may play a role in the binding process.In the presence of calcium, VILIP-1 undergoes a conformational re-arrangement, exposing previously hidden surfaces for interaction with protein partners. We hypothesise a working model where dimeric VILIP-1 interacts with the membrane where it binds membrane-bound receptors in a calcium-dependent manner.
Related JoVE Video
Insights into the membrane interactions of the saposin-like proteins Na-SLP-1 and Ac-SLP-1 from human and dog hookworm.
PLoS ONE
PUBLISHED: 07-29-2011
Show Abstract
Hide Abstract
Saposin-like proteins (SAPLIPs) from soil-transmitted helminths play pivotal roles in host-pathogen interactions and have a high potential as targets for vaccination against parasitic diseases. We have identified two non-orthologous SAPLIPs from human and dog hookworm, Na-SLP-1 and Ac-SLP-1, and solved their three-dimensional crystal structures. Both proteins share the property of membrane binding as monitored by liposome co-pelleting assays and monolayer adsorption. Neither SAPLIP displayed any significant haemolytic or bactericidal activity. Based on the structural information, as well as the results from monolayer adsorption, we propose models of membrane interactions for both SAPLIPs. Initial membrane contact of the monomeric Na-SLP-1 is most likely by electrostatic interactions between the membrane surface and a prominent basic surface patch. In case of the dimeric Ac-SLP-1, membrane interactions are most likely initiated by a unique tryptophan residue that has previously been implicated in membrane interactions in other SAPLIPs.
Related JoVE Video
The role of conserved Glu residue on cyclotide stability and activity: a structural and functional study of kalata B12, a naturally occurring Glu to Asp mutant.
Biochemistry
PUBLISHED: 04-25-2011
Show Abstract
Hide Abstract
Cyclotides are a family of plant defense proteins with a unique cyclic backbone and cystine knot. Their remarkable stability under harsh thermal, enzymatic, and chemical conditions, combined with their range of bioactivities, including anti-HIV activity, underpins their potential as protein drug scaffolds. The vast majority of cyclotides possess a conserved glutamate residue in loop 1 of the sequence that is involved in a structurally important network of hydrogen bonds to an adjacent loop (loop 3). A single native cyclotide sequence, kalata B12, has been discovered that has an aspartic acid in this otherwise conserved position. Previous studies have determined that methylation of the glutamate or substitution with alanine abolishes the membrane disrupting activity that is characteristic of the family. To further understand the role of this conserved structural feature, we studied the folding, structure, stability, and activity of the natural aspartic acid variant kalata B12 and compared it to the prototypical cyclotide kalata B1, along with its glutamate to alanine or aspartate mutants. We show that the overall fold of kalata B12 is similar to the structure of other cyclotides, confirming that the cyclotide framework is robust and tolerant to substitution, although the structure appears to be more flexible than other cyclotides. Modification of the glutamate in kalata B1 or replacing the aspartate in kalata B12 with a glutamate reduces the efficiency of oxidative folding relative to the native peptides. The bioactivity of all modified glutamate cyclotides is abolished, suggesting an important functional role of this conserved residue. Overall, this study shows that the presence of a glutamic acid in loop 1 of the cyclotides improves stability and is essential for the membrane disrupting activity of cyclotides.
Related JoVE Video
Atypical (RIO) protein kinases from Haemonchus contortus--promise as new targets for nematocidal drugs.
Biotechnol. Adv.
PUBLISHED: 01-14-2011
Show Abstract
Hide Abstract
Almost nothing is known about atypical kinases in multicellular organisms, including parasites. Supported by information and data available for the free-living nematode, Caenorhabditis elegans, and other eukaryotes, the present article describes three RIO kinase genes, riok-1, riok-2 and riok-3, from Haemonchus contortus, one of the most important parasitic nematodes of small ruminants. Analyses of these genes and their products predict that they each play critical roles in the developmental pathways of parasitic nematodes. The findings of this review indicate prospects for functional studies of these genes in C. elegans (as a surrogate) and opportunities for the design of a novel class of nematode-specific inhibitors of RIO kinases. The latter aspect is of paramount importance, given the serious problems linked to anthelmintic resistance in parasitic nematode populations of livestock.
Related JoVE Video
Extensions of PDZ domains as important structural and functional elements.
Protein Cell
PUBLISHED: 07-17-2010
Show Abstract
Hide Abstract
Divide and conquer has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions extensions. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results ( http://bcz102.ust.hk/pdzex/ ). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.
Related JoVE Video
Cyclotides are a component of the innate defense of Oldenlandia affinis.
Biopolymers
PUBLISHED: 06-22-2010
Show Abstract
Hide Abstract
Cyclotides are small cysteine-rich plant peptides similar in size and processing to the defensins. Long-term growth of the Rubiaceae family plant Oldenlandia affinis under different conditions reveals a diverse cyclotide gene and peptide expression profile, including tissue specificity, suggesting that different cyclotides are regulated differently both spatially and in response to the environment. To determine whether cyclotide precursor gene regulation was dynamic we exposed O. affinis to a range of abiotic, biotic, and hormonal stimuli and monitored Oak1-4 expression over a 48-h period. Unlike some defensins, the genes for cyclotide precursor proteins Oak1-4 did not display dynamic change, indicating that they contribute to the basal defense of O. affinis. Despite this lack of dynamism, the cyclotide profile of plants grown on plates differed markedly from field-grown plants and so prompted attempts to discover novel cyclotides and precursor genes. The two most abundant cyclotides from plate-grown O. affinis were sequenced and one was found to be an unusual linear cyclotide derivative, kalata B20-lin. Degenerate PCR of plate-grown O. affinis obtained five novel cyclotide genes including Oak9 which encodes for kalata B20-lin and appears to have arisen by the presence of a premature stop codon.
Related JoVE Video
Isolation and characterization of cytotoxic cyclotides from Viola tricolor.
Peptides
PUBLISHED: 03-29-2010
Show Abstract
Hide Abstract
Many plants of the Violaceae plant family have been used in traditional remedies, and these plants often contain cyclotides, a particular type of plant cyclopeptide that is distinguished by a cyclic cystine knot motif. In general, bioactive plant cyclopeptides are interesting candidates for drug development. In the current study, a suite of 14 cyclotides, which includes seven novel cyclotides [vitri B, C, D, E, F, varv Hm, and He], together with seven known cyclotides [varv A, D, E, F, H, vitri A, and cycloviolacin O2], was isolated from Viola tricolor, a common flower. A chromatography-based method was used to isolate the cyclotides, which were characterized using tandem mass spectrometry and NMR spectroscopy. Several of the cyclotides showed cytotoxic activities against five cancer cell lines, U251, MDA-MB-231, A549, DU145, and BEL-7402. Three cyclotides, vitri A, vitri F, and cycloviolacin O2, were the most cytotoxic. The cytotoxic activity of the cyclotides did not correlate well with their hemolytic activity, indicating that different interactions, most likely with membranes, are involved for cytotoxic and hemolytic activities. Homology modeling of the structures was used in deriving structure-activity relationships.
Related JoVE Video
Isolation and characterization of peptides from Momordica cochinchinensis seeds.
J. Nat. Prod.
PUBLISHED: 08-29-2009
Show Abstract
Hide Abstract
The plant Momordica cochinchinensis has traditionally been used in Chinese medicine to treat a variety of illnesses. A range of bioactive molecules have been isolated from this plant, including peptides, which are the focus of this study. Here we report the isolation and characterization of two novel peptides, MCoCC-1 and MCoCC-2, containing 33 and 32 amino acids, respectively, which are toxic against three cancer cell lines. The two peptides are highly homologous to one another, but show no sequence similarity to known peptides. Elucidation of the three-dimensional structure of MCoCC-1 suggests the presence of a cystine knot motif, also found in a family of trypsin inhibitor peptides from this plant. However, unlike its structural counterparts, MCoCC-1 does not inhibit trypsin. MCoCC-1 has a well-defined structure, characterized mainly by a triple-stranded antiparallel beta-sheet, but unlike the majority of cystine knot proteins MCoCC-1 contains a disordered loop presumably as a result of flexibility in a localized region of the molecule. Of the cell lines tested, MCoCC-1 is the most toxic against a human melanoma cell line (MM96L) and is nonhemolytic to human erythrocytes. The role of these peptides within the plant remains to be determined.
Related JoVE Video
Combined X-ray and NMR analysis of the stability of the cyclotide cystine knot fold that underpins its insecticidal activity and potential use as a drug scaffold.
J. Biol. Chem.
PUBLISHED: 02-10-2009
Show Abstract
Hide Abstract
Cyclotides are a family of plant defense proteins that are highly resistant to adverse chemical, thermal, and enzymatic treatment. Here, we present the first crystal structure of a cyclotide, varv F, from the European field pansy, Viola arvensis, determined at a resolution of 1.8 A. The solution state NMR structure was also determined and, combined with measurements of biophysical parameters for several cyclotides, provided an insight into the structural features that account for the remarkable stability of the cyclotide family. The x-ray data confirm the cystine knot topology and the circular backbone, and delineate a conserved network of hydrogen bonds that contribute to the stability of the cyclotide fold. The structural role of a highly conserved Glu residue that has been shown to regulate cyclotide function was also determined, verifying its involvement in a stabilizing hydrogen bond network. We also demonstrate that varv F binds to dodecylphosphocholine micelles, defining the binding orientation and showing that its structure remains unchanged upon binding, further demonstrating that the cyclotide fold is rigid. This study provides a biological insight into the mechanism by which cyclotides maintain their native activity in the unfavorable environment of predator insect guts. It also provides a structural basis for explaining how a cluster of residues important for bioactivity may be involved in self-association interactions in membranes. As well as being important for their bioactivity, the structural rigidity of cyclotides makes them very suitable as a stable template for peptide-based drug design.
Related JoVE Video
Despite a conserved cystine knot motif, different cyclotides have different membrane binding modes.
Biophys. J.
PUBLISHED: 01-28-2009
Show Abstract
Hide Abstract
Cyclotides are cyclic proteins produced by plants for defense against pests. Because of their remarkable stability and diverse bioactivities, they have a range of potential therapeutic applications. The bioactivities of cyclotides are believed to be mediated through membrane interactions. To determine the structural basis for the biological activity of the two major subfamilies of cyclotides, we determined the conformation and orientation of kalata B2 (kB2), a Möbius cyclotide, and cycloviolacin O2 (cO2), a bracelet cyclotide, bound to dodecylphosphocholine micelles, using NMR spectroscopy in the presence and absence of 5- and 16-doxylstearate relaxation probes. Analysis of binding curves using the Langmuir isotherm indicated that cO2 and kB2 have association constants of 7.0 x 10(3) M(-1) and 6.0 x 10(3) M(-1), respectively, consistent with the notion that they are bound near the surface, rather than buried deeply within the micelle. This suggestion is supported by the selective broadening of micelle-bound cyclotide NMR signals upon addition of paramagnetic Mn ions. The cyclotides from the different subfamilies exhibited clearly different binding orientations at the micelle surface. Structural analysis of cO2 confirmed that the main element of the secondary structure is a beta-hairpin centered in loop 5. A small helical turn is present in loop 3. Analysis of the surface profile of cO2 shows that a hydrophobic patch stretches over loops 2 and 3, in contrast to the hydrophobic patch of kB2, which predominantly involves loops 2 and 5. The different location of the hydrophobic patches in the two cyclotides explains their different binding orientations and provides an insight into the biological activities of cyclotides.
Related JoVE Video
Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions.
J. Biol. Chem.
Show Abstract
Hide Abstract
Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities.
Related JoVE Video
Cyclotide isolation and characterization.
Meth. Enzymol.
Show Abstract
Hide Abstract
Cyclotides are disulfide-rich cyclic peptides produced by plants with the presumed natural function of defense agents against insect pests. They are present in a wide range of plant tissues, being ribosomally synthesized via precursor proteins that are posttranslationally processed to produce mature peptides with a characteristic cyclic backbone and cystine knot motif associated with their six conserved cysteine residues. Their processing is not fully understood but involves asparaginyl endoproteinase activity. In addition to interest in their defense roles and their unique topologies, cyclotides have attracted attention as potential templates in peptide-based drug design applications. This chapter provides protocols for the isolation of cyclotides from plants, their detection and sequencing by mass spectrometry, and their structural analysis by NMR, as well as describing methods for the isolation of nucleic acid sequences that encode their precursor proteins. Assays to assess their membrane-binding interactions are also described. These protocols provide a "starter kit" for researchers entering the cyclotide field.
Related JoVE Video
Alpha-1 giardin is an annexin with highly unusual calcium-regulated mechanisms.
J. Mol. Biol.
Show Abstract
Hide Abstract
Alpha-giardins constitute the annexin proteome (group E annexins) in the intestinal protozoan parasite Giardia and, as such, represent the evolutionary oldest eukaryotic annexins. The dominance of alpha-giardins in the cytoskeleton of Giardia with its greatly reduced actin content emphasises the importance of the alpha-giardins for the structural integrity of the parasite, which is particularly critical in the transformation stage between cyst and trophozoite. In this study, we report the crystal structures of the apo- and calcium-bound forms of ?1-giardin, a protein localised to the plasma membrane of Giardia trophozoites that has recently been identified as a vaccine target. The calcium-bound crystal structure of ?1-giardin revealed the presence of a type III site in the first repeat as known from other annexin structures, as well as a novel calcium binding site situated between repeats I and IV. By means of comparison, the crystal structures of three different alpha-giardins known to date indicate that these proteins engage different calcium coordination schemes, among each other, as well as compared to annexins of groups A-D. Evaluation of the calcium-dependent binding to acidic phosphoplipid membranes revealed that this process is not only mediated but also regulated by the environmental calcium concentration. Uniquely within the large family of annexins, ?1-giardin disengages from the phospholipid membrane at high calcium concentrations possibly due to formation of a dimeric species. The observed behaviour is in line with changing calcium levels experienced by the parasite during excystation and may thus provide first insights into the molecular mechanisms underpinning the transformation and survival of the parasite in the host.
Related JoVE Video
Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration.
Sci Rep
Show Abstract
Hide Abstract
CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. As a consequence, S463D mutant CRN2 changes the morphology of the F-actin network in the front of lamellipodia. Our data imply that CK2-dependent phosphorylation of CRN2 is involved in the modulation of the local morphology of complex actin structures and thereby inhibits cell migration.
Related JoVE Video
SBAL: a practical tool to generate and edit structure-based amino acid sequence alignments.
Bioinformatics
Show Abstract
Hide Abstract
Both alignment generation and visualization are important processes for producing biologically meaningful sequence alignments. Computational tools that combine reliable, automated and semi-automated approaches to produce secondary structure-based alignments with an appropriate visualization of the results are rare. We have developed SBAL, a tool to generate and edit secondary structure-based sequence alignments. It is easy to install and provides a user-friendly interface. Sequence alignments are displayed, with secondary structure assignments mapped to their corresponding regions in the sequence by using a simple colour scheme. The algorithm implemented for automated and semi-automated secondary structure-based alignment calculations shows a comparable performance to existing software.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.