JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The genetics of microdeletion and microduplication syndromes: an update.
Annu Rev Genomics Hum Genet
PUBLISHED: 04-16-2014
Show Abstract
Hide Abstract
Chromosomal abnormalities, including microdeletions and microduplications, have long been associated with abnormal developmental outcomes. Early discoveries relied on a common clinical presentation and the ability to detect chromosomal abnormalities by standard karyotype analysis or specific assays such as fluorescence in situ hybridization. Over the past decade, the development of novel genomic technologies has allowed more comprehensive, unbiased discovery of microdeletions and microduplications throughout the human genome. The ability to quickly interrogate large cohorts using chromosome microarrays and, more recently, next-generation sequencing has led to the rapid discovery of novel microdeletions and microduplications associated with disease, including very rare but clinically significant rearrangements. In addition, the observation that some microdeletions are associated with risk for several neurodevelopmental disorders contributes to our understanding of shared genetic susceptibility for such disorders. Here, we review current knowledge of microdeletion/duplication syndromes, with a particular focus on recurrent rearrangement syndromes.
Related JoVE Video
DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation.
Hum. Mol. Genet.
PUBLISHED: 11-01-2013
Show Abstract
Hide Abstract
X chromosome inactivation (XCI) is an epigenetic mechanism that silences the majority of genes on one X chromosome in females. Previous studies have suggested that the spread of XCI might be facilitated in part by common repeats such as long interspersed nuclear elements (LINEs). However, owing to the unusual sequence content of the X and the nonrandom distribution of genes that escape XCI, it has been unclear whether the correlation between repeat elements and XCI is a functional one. To test the hypothesis that the spread of XCI shows sequence specificity, we have analyzed the pattern of XCI in autosomal chromatin by performing DNA methylation profiling in six unbalanced X;autosome translocations. Using promoter hypermethylation as an epigenetic signature of XCI, we have determined the inactivation status of 1050 autosomal genes after translocation onto an inactive derivative X. By performing a comparative sequence analysis of autosomal genes that are either subject to or escape the X inactivation signal, we identified a number of common repetitive elements, including L1 and L2 LINEs, and DNA motifs that are significantly enriched around inactive autosomal genes. We show that these same motifs predominantly map to L1P repeat elements, are significantly enriched on the X chromosome versus the autosomes and also occur at higher densities around X-linked genes that are subject to X inactivation compared with those that escape X inactivation. These results are consistent with a potential causal relationship between DNA sequence features such as L1s and the spread of XCI, lending strong support to Mary Lyons repeat hypothesis.
Related JoVE Video
DNase hypersensitive sites and association with multiple sclerosis.
Hum. Mol. Genet.
PUBLISHED: 10-02-2013
Show Abstract
Hide Abstract
Genome-wide association studies (GWASs) have shown that approximately 60 genetic variants influence the risk of developing multiple sclerosis (MS). Our aim was to identify the cell types in which these variants are active. We used available data on MS-associated single nucleotide polymorphisms (SNPs) and deoxyribonuclease I hypersensitive sites (DHSs) from 112 different cell types. Genomic intervals were tested for overlap using the Genomic Hyperbrowser. The expression profile of the genes located nearby MS-associated SNPs was assessed using the software GRAIL (Gene Relationships Across Implicated Loci). Genomic regions associated with MS were significantly enriched for a number of immune DHSs and in particular T helper (Th) 1, Th17, CD8+ cytotoxic T cells, CD19+ B cells and CD56+ natural killer (NK) cells (enrichment = 2.34, 2.19, 2.27, 2.05 and 1.95, respectively; P < 0.0001 for all of them). Similar results were obtained when genomic regions with suggestive association with MS and additional immune-mediated traits were investigated. Several new candidate MS-associated genes located within regions of suggestive association were identified by GRAIL (CARD11, FCRL2, CHST12, SYK, TCF7, SOCS1, NFKBIZ and NPAS1). Genetic data indicate that Th1, Th17, cytotoxic T, B and NK cells play a prominent role in the etiology of MS. Regions with confirmed and suggestive association have a similar immunological profile, indicating that many SNPs truly influencing the risk of MS actually fail to reach genome-wide significance. Finally, similar cell types are involved in the etiology of other immune-mediated diseases.
Related JoVE Video
Complete haplotype sequence of the human immunoglobulin heavy-chain variable, diversity, and joining genes and characterization of allelic and copy-number variation.
Am. J. Hum. Genet.
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
The immunoglobulin heavy-chain locus (IGH) encodes variable (IGHV), diversity (IGHD), joining (IGHJ), and constant (IGHC) genes and is responsible for antibody heavy-chain biosynthesis, which is vital to the adaptive immune response. Programmed V-(D)-J somatic rearrangement and the complex duplicated nature of the locus have impeded attempts to reconcile its genomic organization based on traditional B-lymphocyte derived genetic material. As a result, sequence descriptions of germline variation within IGHV are lacking, haplotype inference using traditional linkage disequilibrium methods has been difficult, and the human genome reference assembly is missing several expressed IGHV genes. By using a hydatidiform mole BAC clone resource, we present the most complete haplotype of IGHV, IGHD, and IGHJ gene regions derived from a single chromosome, representing an alternate assembly of ?1 Mbp of high-quality finished sequence. From this we add 101 kbp of previously uncharacterized sequence, including functional IGHV genes, and characterize four large germline copy-number variants (CNVs). In addition to this germline reference, we identify and characterize eight CNV-containing haplotypes from a panel of nine diploid genomes of diverse ethnic origin, discovering previously unmapped IGHV genes and an additional 121 kbp of insertion sequence. We genotype four of these CNVs by using PCR in 425 individuals from nine human populations. We find that all four are highly polymorphic and show considerable evidence of stratification (Fst = 0.3-0.5), with the greatest differences observed between African and Asian populations. These CNVs exhibit weak linkage disequilibrium with SNPs from two commercial arrays in most of the populations tested.
Related JoVE Video
Regulatory function of conserved sequences upstream of the long-wave sensitive opsin genes in teleost fishes.
Vision Res.
PUBLISHED: 08-01-2011
Show Abstract
Hide Abstract
Vertebrate opsin genes often occur in sets of tandem duplicates, and their expression varies developmentally and in response to environmental cues. We previously identified two highly conserved regions upstream of the long-wave sensitive opsin (LWS) gene cluster in teleosts. This region has since been shown in zebrafish to drive expression of LWS genes in vivo. In order to further investigate how elements in this region control opsin gene expression, we tested constructs encompassing the highly conserved regions and the less conserved portions upstream of the coding sequences in a promoter-less luciferase expression system. A ?4500 bp construct of the upstream region, including the highly-conserved regions Reg I and Reg II, increased expression 100-fold, and successive 5 deletions reduced expression relative to the full 4.5 Kb region. Gene expression was highest when the transcription factor ROR? was co-transfected with the proposed regulatory regions. Because these regions were tested in a promoter-less expression system, they include elements able to initiate and drive transcription. Teleosts exhibit complex color-mediated adaptive behavior and their adaptive significance has been well documented in several species. Therefore these upstream regions of LWS represent a model system for understanding the molecular basis of adaptive variation in gene regulation of color vision.
Related JoVE Video
Phosphatidylinositol synthase is required for lens structural integrity and photoreceptor cell survival in the zebrafish eye.
Exp. Eye Res.
PUBLISHED: 02-07-2011
Show Abstract
Hide Abstract
The zebrafish lens opaque (lop) mutant was previously isolated in a genetic screen and shown to lack rod and cone photoreceptors and exhibit lens opacity, or cataract, at 7 days post-fertilization (dpf). In this manuscript, we provide four different lines of evidence demonstrating that the lop phenotype results from a defect in the cdipt (phosphatidylinositol (PI) synthase; CDP-diacylglycerol-inositol 3-phosphatidyltransferase) gene. First, DNA sequence analysis revealed that the lop mutant contained a missense mutation in the lop open reading frame, which yields a nonconservative amino acid substitution (Ser-111-Cys) within the PI synthase catalytic domain. Second, morpholino-mediated knockdown of the cdipt-encoded PI synthase protein phenocopied the cdipt(lop/lop) mutant, with abnormal lens epithelial and secondary fiber cell morphologies and reduced numbers of photoreceptors. Third, microinjection of in vitro transcribed, wild-type cdipt mRNA into 1-4 cell stage cdipt(lop/lop) embryos significantly reduced the percentage of larvae displaying lens opacity at 7 dpf. Fourth, a cdipt retroviral-insertion allele, cdipt(hi559), exhibited similar lens and retinal abnormalities and failed to complement the cdipt(lop) mutant phenotype. To determine the initial cellular defects associated with the cdipt mutant, we examined homozygous cdipt(hi559/hi559) mutants prior to gross lens opacification at 6 dpf. The cdipt(hi559/hi559) mutants first exhibited photoreceptor layer disruption and photoreceptor cell death at 3 and 4 dpf, respectively, followed by lens dismorphogenesis by 5 dpf. RT-PCR revealed that the cdipt gene is maternally expressed and continues to be transcribed throughout development and into adulthood, in a wide variety of tissues. Using an anti-zebrafish PI synthase polyclonal antiserum, we localized the protein throughout the developing eye, including the photoreceptor layer and lens cortical secondary fiber cells. As expected, the polyclonal antiserum revealed that the PI synthase protein was reduced in amount in both the cdipt(lop/lop) and cdipt(hi559/hi559) mutants. Furthermore, we used a heterologous yeast phenotypic complementation assay to confirm that the wild-type zebrafish cdipt allele encodes functional PI synthase activity. Taken together, the cdipt-encoded PI synthase is required for survival of photoreceptor cells and lens epithelial and secondary cortical fiber cells. These zebrafish cdipt alleles represent excellent in vivo genetic tools to study the role of phosphatidylinositol and its phosphorylated derivatives in lens and photoreceptor development and maintenance.
Related JoVE Video
A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.
Genome Res.
PUBLISHED: 08-24-2010
Show Abstract
Hide Abstract
Initially thought to play a restricted role in calcium homeostasis, the pleiotropic actions of vitamin D in biology and their clinical significance are only now becoming apparent. However, the mode of action of vitamin D, through its cognate nuclear vitamin D receptor (VDR), and its contribution to diverse disorders, remain poorly understood. We determined VDR binding throughout the human genome using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq). After calcitriol stimulation, we identified 2776 genomic positions occupied by the VDR and 229 genes with significant changes in expression in response to vitamin D. VDR binding sites were significantly enriched near autoimmune and cancer associated genes identified from genome-wide association (GWA) studies. Notable genes with VDR binding included IRF8, associated with MS, and PTPN2 associated with Crohns disease and T1D. Furthermore, a number of single nucleotide polymorphism associations from GWA were located directly within VDR binding intervals, for example, rs13385731 associated with SLE and rs947474 associated with T1D. We also observed significant enrichment of VDR intervals within regions of positive selection among individuals of Asian and European descent. ChIP-seq determination of transcription factor binding, in combination with GWA data, provides a powerful approach to further understanding the molecular bases of complex diseases.
Related JoVE Video
Gene duplication and divergence of long wavelength-sensitive opsin genes in the guppy, Poecilia reticulata.
J. Mol. Evol.
PUBLISHED: 06-17-2010
Show Abstract
Hide Abstract
Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.
Related JoVE Video
Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri.
BMC Evol. Biol.
PUBLISHED: 03-30-2010
Show Abstract
Hide Abstract
Long wave-sensitive (LWS) opsin genes have undergone multiple lineage-specific duplication events throughout the evolution of teleost fishes. LWS repertoire expansions in live-bearing fishes (family Poeciliidae) have equipped multiple species in this family with up to four LWS genes. Given that color vision, especially attraction to orange male coloration, is important to mate choice within poeciliids, LWS opsins have been proposed as candidate genes driving sexual selection in this family. To date the genomic organization of these genes has not been described in the family Poeciliidae, and little is known about the mechanisms regulating the expression of LWS opsins in any teleost.
Related JoVE Video
The effect of single nucleotide polymorphisms from genome wide association studies in multiple sclerosis on gene expression.
PLoS ONE
PUBLISHED: 03-14-2010
Show Abstract
Hide Abstract
Multiple sclerosis (MS) is a complex neurological disorder. Its aetiology involves both environmental and genetic factors. Recent genome-wide association studies have identified a number of single nucleotide polymorphisms (SNPs) associated with susceptibility to (MS). We investigated whether these genetic variations were associated with alteration in gene expression.
Related JoVE Video
IGHV4-39 deletion polymorphism does not associate with risk or outcome of multiple sclerosis.
J. Neuroimmunol.
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
The restricted use of immunoglobulin heavy chain variable (IGHV) family 4 gene segments by clonally expanded B cells in brain lesions and cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients is well documented. Specifically, the overrepresentation of gene IGHV4-39 has been highlighted in multiple studies. To investigate the role of IGHV4-39 in MS, we screened 193 MS cases, representing the extremes of clinical outcome (benign and malignant), and 187 controls for a previously reported germline deletion polymorphism containing IGHV4-39. We did not reveal a genetic association linking this polymorphism to MS risk or progression.
Related JoVE Video
Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD).
PLoS ONE
PUBLISHED: 11-04-2009
Show Abstract
Hide Abstract
In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.
Related JoVE Video
Hybridization leads to sensory repertoire expansion in a gynogenetic fish, the Amazon molly (poecilia formosa): a test of the hybrid-sensory expansion hypothesis.
Evolution
Show Abstract
Hide Abstract
Expansions in sensory systems usually require processes such as gene duplication and divergence, and thus evolve slowly. We evaluate a novel mechanism leading to rapid sensory repertoire expansion: hybrid-sensory expansion (HSE). HSE occurs when two species with differently tuned sensory systems form a hybrid, bringing together alleles from each of the parental species. In one generation, a sensory repertoire is created that is the sum of the variance between parental species. The Amazon molly presents a unique opportunity to test the HSE hypothesis in a "frozen" hybrid. We compared opsin sequences of the Amazon molly, Poecilia formosa, to those of the parental species. Both parental species are homozygous at the RH2-1 locus and each of the four long wavelength sensitive loci, while P. formosa possess two different alleles at these loci; one matching each parental allele. Gene expression analysis showed P. formosa use the expanded opsin repertoire that was the result of HSE. Additionally, behavioral tests revealed P. formosa respond to colored stimuli in a manner similar or intermediate to the parental species P. mexicana and P. latipinna. Together these results strongly support the HSE hypothesis. Hybrid-sensory repertoire expansion is likely important in other hybrid species and in other sensory systems.
Related JoVE Video
Estimating the proportion of variation in susceptibility to multiple sclerosis captured by common SNPs.
Sci Rep
Show Abstract
Hide Abstract
Multiple sclerosis (MS) is a complex disease with underlying genetic and environmental factors. Although the contribution of alleles within the major histocompatibility complex (MHC) are known to exert strong effects on MS risk, much remains to be learned about the contributions of loci with more modest effects identified by genome-wide association studies (GWASs), as well as loci that remain undiscovered. We use a recently developed method to estimate the proportion of variance in disease liability explained by 475,806 single nucleotide polymorphisms (SNPs) genotyped in 1,854 MS cases and 5,164 controls. We reveal that ~30% of MS genetic liability is explained by SNPs in this dataset, the majority of which is accounted for by common variants. These results suggest that the unaccounted for proportion could be explained by variants that are in imperfect linkage disequilibrium with common GWAS SNPs, highlighting the potential importance of rare variants in the susceptibility to MS.
Related JoVE Video
Age-associated hyper-methylated regions in the human brain overlap with bivalent chromatin domains.
PLoS ONE
Show Abstract
Hide Abstract
Recent associations between age-related differentially methylated sites and bivalently marked chromatin domains have implicated a role for these genomic regions in aging and age-related diseases. However, the overlap between such epigenetic modifications has so far only been identified with respect to age-associated hyper-methylated sites in blood. In this study, we observed that age-associated differentially methylated sites characterized in the human brain were also highly enriched in bivalent domains. Analysis of hyper- vs. hypo-methylated sites partitioned by age (fetal, child, and adult) revealed that enrichment was significant for hyper-methylated sites identified in children and adults (child, fold difference = 2.28, P = 0.0016; adult, fold difference = 4.73, P = 4.00 × 10(-5)); this trend was markedly more pronounced in adults when only the top 100 most significantly hypo- and hyper-methylated sites were considered (adult, fold difference = 10.7, P = 2.00 × 10(-5)). Interestingly, we found that bivalently marked genes overlapped by age-associated hyper-methylation in the adult brain had strong involvement in biological functions related to developmental processes, including neuronal differentiation. Our findings provide evidence that the accumulation of methylation in bivalent gene regions with age is likely to be a common process that occurs across tissue types. Furthermore, particularly with respect to the aging brain, this accumulation might be targeted to loci with important roles in cell differentiation and development, and the closing off of these developmental pathways. Further study of these genes is warranted to assess their potential impact upon the development of age-related neurological disorders.
Related JoVE Video
Vitamin D receptor binding, chromatin states and association with multiple sclerosis.
Hum. Mol. Genet.
Show Abstract
Hide Abstract
Both genetic and environmental factors contribute to the aetiology of multiple sclerosis (MS). More than 50 genomic regions have been associated with MS susceptibility and vitamin D status also influences the risk of this complex disease. However, how these factors interact in disease causation is unclear. We aimed to investigate the relationship between vitamin D receptor (VDR) binding in lymphoblastoid cell lines (LCLs), chromatin states in LCLs and MS-associated genomic regions. Using the Genomic Hyperbrowser, we found that VDR-binding regions overlapped with active regulatory regions [active promoter (AP) and strong enhancer (SE)] in LCLs more than expected by chance [45.3-fold enrichment for SE (P < 2.0e-05) and 63.41-fold enrichment for AP (P < 2.0e-05)]. Approximately 77% of VDR regions were covered by either AP or SE elements. The overlap between VDR binding and regulatory elements was significantly greater in LCLs than in non-immune cells (P < 2.0e-05). VDR binding also occurred within MS regions more than expected by chance (3.7-fold enrichment, P < 2.0e-05). Furthermore, regions of joint overlap SE-VDR and AP-VDR were even more enriched within MS regions and near to several disease-associated genes. These findings provide relevant insights into how vitamin D influences the immune system and the risk of MS through VDR interactions with the chromatin state inside MS regions. Furthermore, the data provide additional evidence for an important role played by B cells in MS. Further analyses in other immune cell types and functional studies are warranted to fully elucidate the role of vitamin D in the immune system.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.