JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Diet effects on glucose absorption in the small intestine of neonatal calves: importance of intestinal mucosal growth, lactase activity, and glucose transporters.
J. Dairy Sci.
PUBLISHED: 08-06-2014
Show Abstract
Hide Abstract
Colostrum (C) feeding in neonatal calves improves glucose status and stimulates intestinal absorptive capacity, leading to greater glucose absorption when compared with milk-based formula feeding. In this study, diet effects on gut growth, lactase activity, and glucose transporters were investigated in several gut segments of the small intestine. Fourteen male German Holstein calves received either C of milkings 1, 3, and 5 (d 1, 2, and 3 in milk) or respective formulas (F) twice daily from d 1 to d 3 after birth. Nutrient content, and especially lactose content, of C and respective F were the same. On d 4, calves were fed C of milking 5 or respective F and calves were slaughtered 2h after feeding. Tissue samples from duodenum and proximal, mid-, and distal jejunum were taken to measure villus size and crypt depth, mucosa and brush border membrane vesicles (BBMV) were taken to determine protein content, and mRNA expression and activity of lactase and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter (GLUT2) were determined from mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and BBMV were determined, as well as immunochemically localized GLUT2 in the intestinal mucosa. Villus circumference, area, and height were greater, whereas crypt depth was smaller in C than in F. Lactase activity tended to be greater in C than in F. Protein expression of SGLT1 was greater in F than in C. Parameters of villus size, lactase activity, SGLT1 protein expression, as well as apical and basolateral GLUT2 localization in the enterocytes differed among gut segments. In conclusion, C feeding, when compared with F feeding, enhances glucose absorption in neonatal calves primarily by stimulating mucosal growth and increasing absorptive capacity in the small intestine, but not by stimulating abundance of intestinal glucose transporters.
Related JoVE Video
A comparative study into alterations of coenzyme Q redox status in ageing pigs, mice, and worms.
Biofactors
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
Coenzyme Q derivatives (CoQ) are lipid soluble antioxidants that are synthesized endogenously in almost all species and function as an obligatory cofactor of the respiratory chain. There is evidence that CoQ status is altered by age in several species. Here we determined level and redox-state of CoQ in different age groups of pigs, mice and Caenorhabditis elegans. Since these species are very different with respect to lifespan, reproduction and physiology, our approach could provide some general tendencies of CoQ status in ageing organisms. We found that CoQ level decreases with age in pigs and mice, whereas CoQ content increases in older worms. As observed in all three species, ubiquinone, the oxidized form of CoQ, increases with age. Additionally, we were able to show that supplementation of ubiquinol-10, the reduced form of human CoQ10 , slightly increases lifespan of post-reproductive worms. In conclusion, the percentage of the oxidized form of CoQ increases with age indicating higher oxidative stress or rather a decreased anti-oxidative capacity of aged animals.
Related JoVE Video
R-? lipoic acid ?-cyclodextrin complex increases energy expenditure: a 4-month feeding study in mice.
Nutrition
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
A high-fat diet (HFD) affects energy expenditure in laboratory rodents. R-? lipoic acid cyclodextrin (RALA-CD) complex is a stable form of lipoic acid (LA) and may improve energy expenditure. The aim of this study was to determine the effect of RALA-CD on energy expenditure and underlying molecular targets in female laboratory mice.
Related JoVE Video
Low and High Dietary Protein:Carbohydrate Ratios during Pregnancy Affect Materno-Fetal Glucose Metabolism in Pigs.
J. Nutr.
PUBLISHED: 12-18-2013
Show Abstract
Hide Abstract
Inadequate dietary protein during pregnancy causes intrauterine growth retardation. Whether this is related to altered maternal and fetal glucose metabolism was examined in pregnant sows comparing a high-protein:low-carbohydrate diet (HP-LC; 30% protein, 39% carbohydrates) with a moderately low-protein:high-carbohydrate diet (LP-HC; 6.5% protein, 68% carbohydrates) and the isoenergetic standard diet (ST; 12.1% protein, 60% carbohydrates). During late pregnancy, maternal and umbilical glucose metabolism and fetal hepatic mRNA expression of gluconeogenic enzymes were examined. During an i.v. glucose tolerance test (IVGTT), the LP-HC-fed sows had lower insulin concentrations and area under the curve (AUC), and higher glucose:insulin ratios than the ST- and the HP-LC-fed sows (P < 0.05). Insulin sensitivity and glucose clearance were higher in the LP-HC sows compared with ST sows (P < 0.05). Glucagon concentrations during postabsorptive conditions and IVGTT, and glucose AUC during IVGTT, were higher in the HP-LC group compared with the other groups (P < 0.001). (13)C glucose oxidation was lower in the HP-LC sows than in the ST and LP-HC sows (P < 0.05). The HP-LC fetuses were lighter and had a higher brain:liver ratio than the ST group (P < 0.05). The umbilical arterial inositol concentration was greater in the HP-LC group (P < 0.05) and overall small fetuses (230-572 g) had higher values than medium and heavy fetuses (?573 g) (P < 0.05). Placental lactate release was lower in the LP-HC group than in the ST group (P < 0.05). Fetal glucose extraction tended to be lower in the LP-HC group than in the ST group (P = 0.07). In the HP-LC and LP-HC fetuses, hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC) was higher than in the ST fetuses (P < 0.05). In conclusion, the HP-LC and LP-HC sows adapted by reducing glucose turnover and oxidation and having higher glucose utilization, respectively. The HP-LC and LP-HC fetuses adapted via prematurely expressed hepatic gluconeogenic enzymes.
Related JoVE Video
Higher body fatness in intrauterine growth retarded juvenile pigs is associated with lower fat and higher carbohydrate oxidation during ad libitum and restricted feeding.
Eur J Nutr
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
A thrifty energy metabolism has been suggested in intrauterine growth restricted (IUGR) offspring. We characterized energy metabolism and substrate oxidation patterns in IUGR pigs in response to food restriction (FR) and refeeding (RFD).
Related JoVE Video
Supplementation of conjugated linoleic acid in dairy cows reduces endogenous glucose production during early lactation.
J. Dairy Sci.
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.
Related JoVE Video
Effects on transcriptional regulation and lipid droplet characteristics in the liver of female juvenile pigs after early postnatal feed restriction and refeeding are dependent on birth weight.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Epidemiological and experimental data indicate that caloric restriction in early postnatal life may improve liver lipid metabolism in low birth weight individuals. The present study investigated transcriptional and metabolic responses to low (U) and normal (N) birth weight (d 75, T1) and postnatal feed restriction (R, 60% of controls, d 98, T2) followed by subsequent refeeding until d 131 of age (T3). Liver tissue studies were performed with a total of 42 female pigs which were born by multiparous German landrace sows. Overall, 194 genes were differentially expressed in the liver of U vs. N (T1) animals with roles in lipid metabolism. The total mean area and number of lipid droplets (LD) was about 4.6- and 3.7 times higher in U compared to N. In U, the mean LD size (µm(2)) was 24.9% higher. 3-week feed restriction reduced total mean area of LDs by 58.3 and 72.7% in U and N, respectively. A functional role of the affected genes in amino acid metabolism was additionally indicated. This was reflected by a 17.0% higher arginine concentration in the liver of UR animals (vs. NR). To evaluate persistency of effects, analyses were also done after refeeding period at T3. Overall, 4 and 22 genes show persistent regulation in U and N animals after 5 weeks of refeeding, respectively. These genes are involved in e.g. processes of lipid and protein metabolism and glucose homeostasis. Moreover, the recovery of total mean LD area in U and N animals back to the previous T1 level was observed. However, when compared to controls, the mean LD size was still reduced by 23.3% in UR, whereas it was increased in NR (+24.7%). The present results suggest that short-term postnatal feed restriction period programmed juvenile U animals for an increased rate of hepatic lipolysis in later life.
Related JoVE Video
Somatic cytochrome c (CYCS) gene expression and promoter-specific DNA methylation in a porcine model of prenatal exposure to maternal dietary protein excess and restriction.
Br. J. Nutr.
PUBLISHED: 09-01-2011
Show Abstract
Hide Abstract
There is growing evidence that maternal nutrition during gestation has an important effect on offspring development as well as on their gene expression with long-term effects on the metabolic state. A potential mechanism forming long-lasting gene expression patterns is DNA methylation of cytosine in CpG dinucleotides within the promoter region of distinct genes. There has been special focus on mitochondrial dysfunction by prenatal malnourishment over the recent years. To this end, we investigated the gene expression of somatic cytochrome c (CYCS), an important member of the respiratory chain, in a porcine model of gestational protein over- and undersupply at 94 d post-conception and 1, 28 and 188 d of age, and analysed the association with the DNA methylation status within the CYCS promoter. Gene expression on day 1 post natum showed a significant increase in the low protein (LP) group (P = 0·0005) and a slight increase in the high protein (HP) group (P = 0·079) compared with the control (CO) group in the liver. The mean of the methylation level over forty-seven CpG sites from nucleotide (nt) - 417 to - 10 was significantly decreased in the LP (P = 0·007) and HP (P = 0·009) groups compared with that in the CO group. Excess and restricted protein supply during pregnancy led to hypomethylation of a number of CpG sites in the CYCS promoter, including those representing putative transcription factor-binding sites, associated with elevated expression levels. However, the impact of the low-protein gestation diet is more pronounced, indicating that the offspring could better adapt to excess rather than restricted protein supply.
Related JoVE Video
Involvement of skeletal muscle protein, glycogen, and fat metabolism in the adaptation on early lactation of dairy cows.
J. Proteome Res.
PUBLISHED: 08-09-2011
Show Abstract
Hide Abstract
During early lactation, high-yielding dairy cows cannot consume enough feed to meet nutrient requirements. As a consequence, animals drop into negative energy balance and mobilize body reserves including muscle protein and glycogen for milk production, direct oxidation, and hepatic gluconeogenesis. To examine which muscle metabolic processes contribute to the adaptation during early lactation, six German Holstein cows were blood sampled and muscle biopsied throughout the periparturient period. From pregnancy to lactation, the free plasma amino acid pattern imbalanced and plasma glucose decreased. Several muscle amino acids, as well as total muscle protein, fat, and glycogen, and the expression of glucose transporter-4 were reduced within the first 4 weeks of lactation. The 2-DE and MALDI-TOF-MS analysis identified 43 differentially expressed muscle protein spots throughout the periparturient period. In early lactation, expression of cytoskeletal proteins and enzymes involved in glycogen synthesis and in the TCA cycle was decreased, whereas proteins related to glycolysis, fatty acid degradation, lactate, and ATP production were increased. On the basis of these results, we propose a model in which the muscle breakdown in early lactation provides substrates for milk production by a decoupled Cori cycle favoring hepatic gluconeogenesis and by interfering with feed intake signaling.
Related JoVE Video
A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model.
PLoS ONE
PUBLISHED: 05-26-2011
Show Abstract
Hide Abstract
In rodent models and in humans the impact of gestational diets on the offsprings phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offsprings transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP) or an adequate protein diet (AP, 12% CP) throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc) and postnatal stages (1, 28, 188 dpn). Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages.
Related JoVE Video
High-protein diet in lactation leads to a sudden infant death-like syndrome in mice.
PLoS ONE
PUBLISHED: 02-03-2011
Show Abstract
Hide Abstract
It is well accepted that reduced foetal growth and development resulting from maternal malnutrition are associated with a number of chronic conditions in later life. On the other hand such generation-transcending effects of over-nutrition and of high-protein consumption in pregnancy and lactation, a proven fact in all developed societies, are widely unknown. Thus, we intended to describe the generation-transcending effects of a high-protein diet, covering most relevant topics of human life like embryonic mortality, infant death, and physical health in later life.
Related JoVE Video
Limited and excess protein intake of pregnant gilts differently affects body composition and cellularity of skeletal muscle and subcutaneous adipose tissue of newborn and weanling piglets.
Eur J Nutr
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
This study investigated whether dietary protein intake less (50%) or greater (250%) than requirements throughout gestation differently affects offspring body composition and cellular properties of skeletal muscle and subcutaneous adipose tissue (SCAT).
Related JoVE Video
Hepatic expression of the GH/JAK/STAT/IGF pathway, acute-phase response signalling and complement system are affected in mouse offspring by prenatal and early postnatal exposure to maternal high-protein diet.
Eur J Nutr
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Effects of pre- and early postnatal exposure to maternal high-protein diets are not well understood. Transcription profiling was performed in male mouse offspring exposed to maternal high-protein diet during pregnancy and/or lactation to identify affected hepatic molecular pathways.
Related JoVE Video
Proteome and radioimmunoassay analyses of pituitary hormones and proteins in response to feed restriction of dairy cows.
Proteomics
PUBLISHED: 12-08-2010
Show Abstract
Hide Abstract
The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, ?-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.
Related JoVE Video
Intestinal glucose absorption but not endogenous glucose production differs between colostrum- and formula-fed neonatal calves.
J. Nutr.
PUBLISHED: 11-17-2010
Show Abstract
Hide Abstract
Glucose supply markedly changes during the transition to extrauterine life. In this study, we investigated diet effects on glucose metabolism in neonatal calves. Calves were fed colostrum (C; n = 7) or milk-based formula (F; n = 7) with similar nutrient content up to d 4 of life. Blood plasma samples were taken daily before feeding and 2 h after feeding on d 4 to measure glucose, lactate, nonesterified fatty acids, protein, urea, insulin, glucagon, and cortisol concentrations. On d 2, additional blood samples were taken to measure glucose first-pass uptake (FPU) and turnover by oral [U-(13)C]-glucose and i.v. [6,6-(2)H(2)]-glucose infusion. On d 3, endogenous glucose production and gluconeogenesis were determined by i.v. [U-(13)C]-glucose and oral deuterated water administration after overnight feed deprivation. Liver tissue was obtained 2 h after feeding on d 4 and glycogen concentration and activities and mRNA abundance of gluconeogenic enzymes were measured. Plasma glucose and protein concentrations and hepatic glycogen concentration were higher (P < 0.05), whereas plasma urea, glucagon, and cortisol (d 2) concentrations as well as hepatic pyruvate carboxylase mRNA level and activity were lower (P < 0.05) in group C than in group F. Orally administered [U-(13)C]-glucose in blood was higher (P < 0.05) but FPU tended to be lower (P < 0.1) in group C than in group F. The improved glucose status in group C resulted from enhanced oral glucose absorption. Metabolic and endocrine changes pointed to elevated amino acid degradation in group F, presumably to provide substrates to meet energy requirements and to compensate for impaired oral glucose uptake.
Related JoVE Video
Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status.
Curr Opin Clin Nutr Metab Care
PUBLISHED: 07-14-2010
Show Abstract
Hide Abstract
We review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases.
Related JoVE Video
C/EBP-beta drives expression of the nutritionally regulated promoter IA of the acetyl-CoA carboxylase-alpha gene in cattle.
Biochim. Biophys. Acta
PUBLISHED: 06-09-2010
Show Abstract
Hide Abstract
Acetyl-CoA carboxylase-alpha (ACC-alpha) is the rate-limiting enzyme for de novo fatty acid synthesis. Among the four promoters expressing the bovine gene, promoter IA (PIA) is dominantly active and nutritionally regulated in lipogenic tissues. CCAAT/enhancer binding proteins are crucially involved in regulating the activity of this promoter. We examine here, which member of this family of transcription factors is most important for promoter activation. To differentiate the individual contribution of different members of the C/EBP family transcription factors controlling the ACC-alpha gene expression in cattle, we established vectors expressing full length (FL) or N-terminally truncated (DeltaN) variants of the C/EBP factors (alpha, -beta, -delta, and -epsilon) in mammalian cells. Using nuclear extracts of cells expressing the DeltaN-C/EBP factors we determined in electrophoretic mobility shift assays that C/EBPalpha, -beta and -epsilon, but not C/EBPdelta may directly bind to the cognate C/EBP-binding site in the immediate ACC-alpha PIA. Co-transfection analyses of the various FL-C/EBP expression vectors together with a reporter gene driven by the ACC-alpha-PIA promoter demonstrated that C/EBPbeta has the strongest activation potential. Hence, activity of this factor may be a key regulator of ACC-alpha-expression in lipogenic tissues.
Related JoVE Video
Nutritional programming of gastrointestinal tract development. Is the pig a good model for man?
Nutr Res Rev
PUBLISHED: 05-26-2010
Show Abstract
Hide Abstract
The consequences of early-life nutritional programming in man and other mammalian species have been studied chiefly at the metabolic level. Very few studies, if any, have been performed in the gastrointestinal tract (GIT) as the target organ, but extensive GIT studies are needed since the GIT plays a key role in nutrient supply and has an impact on functions of the entire organism. The possible deleterious effects of nutritional programming at the metabolic level were discovered following epidemiological studies in human subjects, and confirmed in animal models. Investigating the impact of programming on GIT structure and function would need appropriate animal models due to ethical restrictions in the use of human subjects. The aim of the present review is to discuss the use of pigs as an animal model as a compromise between ethically acceptable animal studies and the requirement of data which can be interpolated to the human situation. In nutritional programming studies, rodents are the most frequently used model for man, but GIT development and digestive function in rodents are considerably different from those in man. In that aspect, the pig GIT is much closer to the human than that of rodents. The swine species is closely comparable with man in many nutritional and digestive aspects, and thus provides ample opportunity to be used in investigations on the consequences of nutritional programming for the GIT. In particular, the sow-piglets dyad could be a useful tool to simulate the human mother-infant dyad in studies which examine short-, middle- and long-term effects and is suggested as the reference model.
Related JoVE Video
Effect of a high-protein diet on food intake and liver metabolism during pregnancy, lactation and after weaning in mice.
Proteomics
PUBLISHED: 04-28-2010
Show Abstract
Hide Abstract
Major hepatic metabolic pathways are involved in the control of food intake but how dietary proteins affect global metabolism to adjust food intake is incompletely understood, particularly under physiological challenging conditions such as lactation. In order to identify these molecular events, mice were fed a high-protein (HP) diet from pregnancy, during lactation until after weaning and compared with control fed counterparts. Liver specimens were analyzed for regulated proteins using 2-DE and MALDI-TOF-MS and plasma samples for metabolites. Based on the 26 differentially expressed proteins associated with depleted liver glycogen content, elevated urea and citrulline plasma concentrations, we conclude that HP feeding during lactation leads to an activated amino acid, carbohydrate and fatty acid catabolism while it activates gluconeogenesis. From pregnancy to lactation, plasma arginine, tryptophan, serine, glutamine and cysteine decreased, whereas urea concentrations increased in both groups. Concomitantly, hepatic glycogen content decreased while total fat content remained unaltered in both groups. Consideration of 59 proteins differentially expressed between pregnancy and lactation highlights different strategies of HP and control fed mice to meet energy requirements for lactation by adjusting amino acid degradation, carbohydrate and fat metabolism, citrate cycle, but also ATP-turnover, protein folding, secretion of proteins and (de)activation of transcription factors.
Related JoVE Video
A simplified mass isotopomer approach to estimate gluconeogenesis rate in vivo using deuterium oxide.
Rapid Commun. Mass Spectrom.
PUBLISHED: 04-15-2010
Show Abstract
Hide Abstract
We compare a new simplified (2)H enrichment mass isotopomer analysis (MIA) against the laborious hexamethylentetramine (HMT) method to quantify the contribution of gluconeogenesis (GNG) to total glucose production (GP) in calves. Both methods are based on the (2)H labeling of glucose after in vivo administration of deuterium oxide. The (2)H enrichments of plasma glucose at different C-H positions were measured as aldonitrile pentaacetate (AAc) and methyloxime-trimethylsilyl (MoxTMS) derivatives or HMT by gas chromatography/mass spectrometry (GC/MS). Two pre-ruminating fasted Holstein calves (51 kg body mass, BM, age 7 days) received two oral bolus doses of (2)H(2)O (10 g/kg BM, 70 atom% (2)H) at 7:00 h and 11:00 h after overnight food withdrawal. Blood samples for fractional GNG determination were collected at -24 and between 6 and 9 h after the first (2)H(2)O dose. The ratio of (2)H enrichments C5/C2 represents the contribution of GNG to GP. The (2)H enrichment at C2 was calculated based on the ion fragments at m/z 328 (C1-C6) - m/z 187 (C3-C6) of glucose AAc. The (2)H enrichment at C5 was approximated either by averaging the (2)H enrichment at C5-C6 using the ion fragment of glucose MoxTMS at m/z 205 or by conversion of the C5 of glucose into HMT. The fractional GNG calculated by the C5-C6 average (2)H enrichment method (41.4 +/- 6.9%) compared to the HMT method (34.3 +/- 11.4%) was not different (mean +/- SD, n = 6 replicates). In conclusion, GNG can be estimated with less laborious sample preparation by means of our new C5-C6 average (2)H enrichment method using AAc and MoxTMS glucose derivatives.
Related JoVE Video
Role of beta-hydroxybutyric acid in the central regulation of energy balance.
Appetite
PUBLISHED: 04-12-2010
Show Abstract
Hide Abstract
Although the phenomenon of beta-hydroxybutyric acid (BHBA) impact on satiety and thermogenesis has been described in the past decades, the underlying molecular mechanisms involved remain unresolved. Other metabolites such as glucose, fatty or branched chain amino acids are known to activate the AMP kinase pathway leading to an increase of anorexic and a decrease of orexigenic neuropeptides in the hypothalamus, one of the central regulators of energy homeostasis. Since BHBA is utilized as an energy source by the brain particularly in suckling newborns and under starving conditions, it is supposed to be a further central signal and energy providing substrate involved in the regulation of food intake. Moreover, BHBA might present a therapeutic approach for treating neuronal diseases because of its neuroprotective properties. Therefore, the purpose of this review is to summarize the known central effects of BHBA and to point out the importance of the identification of cellular pathways triggered in response to BHBA.
Related JoVE Video
Early nutrition and later obesity: animal models provide insights into mechanisms.
Adv. Exp. Med. Biol.
PUBLISHED: 06-19-2009
Show Abstract
Hide Abstract
Epidemiological evidence suggests that in utero as well as early postnatal life exposure to an imbalanced nutrition are both related to a greater propensity to become obese in later life. Rodent and sheep models of metabolic programming of obesity by early life nutrition include maternal low and high dietary protein and energy or food intake as well as high fat diets. Maternal nutritional imbalance during pregnancy and/or lactation programs energy expenditure, food intake and physical activity in the offspring. Underlying mechanisms of altered energy balance in programmed offspring are associated with disturbances of ontogeny of hypothalamic feeding circuits, leptin and glucocorticoid action which have long-lasting effects on food intake, energy expenditure and fat tissue metabolism.
Related JoVE Video
Proteome analysis of fatty liver in feed-deprived dairy cows reveals interaction of fuel sensing, calcium, fatty acid, and glycogen metabolism.
Physiol. Genomics
PUBLISHED: 02-24-2009
Show Abstract
Hide Abstract
The liver of dairy cows is involved in signaling the current hepatic metabolic state to the brain via metabolites and nerval afferents to control and adjust feed intake. Feed deprivation may result in mobilization of body reserves favoring hepatic steatosis. While the overall metabolic changes are well characterized, specific regulatory mechanisms are not readily understood. To identify molecular events associated with metabolic adaptation and the control of energy homeostasis, liver specimens from six ad libitum-fed and six feed-deprived cows were analyzed for selected metabolites, for the activation of AMP kinase, and for regulatory/regulated proteins using two-dimensional gel electrophoresis and MALDI-TOF-MS. Feed deprivation increased total liver fat and the calcium content, as well as augmented AMPK phosphorylation, while it decreased the contents of protein, glucose, glycogen, and cholesterol when expressed as a percentage of dry matter. Among 34 differentially expressed proteins identified, we found downregulation of proteins associated with fatty acid oxidation, glycolysis, electron transfer, protein degradation, and antigen processing, as well as cytoskeletal rearrangement. Proteins upregulated after feed deprivation included enzymes of the urea cycle, fatty acid or cholesterol transport proteins, an inhibitor of glycolysis, and previously unknown changes in calcium signaling network. Direct correlation was found between expression of glycolytic enzymes and glucose/glycogen content, whereas inverse correlation exists between expression of beta-oxidative enzymes and total liver fat content. In conclusion, the regulatory response of identified proteins may help to explain development and consequences of hepatic lipidosis but also offers novel candidates potentially involved in signaling for maintaining energy homeostasis.
Related JoVE Video
High and low protein? carbohydrate dietary ratios during gestation alter maternal-fetal cortisol regulation in pigs.
PLoS ONE
Show Abstract
Hide Abstract
Imbalanced maternal nutrition during gestation can cause alterations of the hypothalamic-pituitary-adrenal (HPA) system in offspring. The present study investigated the effects of maternal low- and high-protein diets during gestation in pigs on the maternal-fetal HPA regulation and expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11?-hydroxysteroid dehydrogenase 1 and 2 (11?-HSD1 and 11?-HSD2) and c-fos mRNAs in the placenta and fetal brain. Twenty-seven German Landrace sows were fed diets with high (HP, 30%), low (LP, 6.5%) or adequate (AP, 12.1%) protein levels made isoenergetic by varying the carbohydrate levels. On gestational day 94, fetuses were recovered under general anesthesia for the collection of blood, brain and placenta samples. The LP diet in sows increased salivary cortisol levels during gestation compared to the HP and AP sows and caused an increase of placental GR and c-fos mRNA expression. However, the diurnal rhythm of plasma cortisol was disturbed in both LP and HP sows. Total plasma cortisol concentrations in the umbilical cord vessels were elevated in fetuses from HP sows, whereas corticosteroid-binding globulin levels were decreased in LP fetuses. In the hypothalamus, LP fetuses displayed an enhanced mRNA expression of 11?-HSD1 and a reduced expression of c-fos. Additionally, the 11?-HSD2 mRNA expression was decreased in both LP and HP fetuses. The present results suggest that both low and high protein?carbohydrate dietary ratios during gestation may alter the expression of genes encoding key determinants of glucocorticoid hormone action in the fetus with potential long-lasting consequences for stress adaptation and health.
Related JoVE Video
Feeding of selenium alone or in combination with glucoraphanin differentially affects intestinal and hepatic antioxidant and phase II enzymes in growing rats.
Biol Trace Elem Res
Show Abstract
Hide Abstract
The anti-carcinogenic effects of sulforaphane (SFN) are based on the up-regulation of antioxidant enzymes (AE) and phase II enzymes (PIIE) through the transcription factor Nrf2. Current knowledge on the roles of the SFN precursor glucoraphanin (GRA) on these processes is limited. Anti-carcinogenic effects of Se depending on glutathione peroxidase (GPx) activity have also been reported. We studied effects and possible synergisms of Se and GRA on the expression and activity of a broad spectrum of AE and PIIE in jejunum, colon and the liver of rats fed diets differing in Se and GRA concentration. In all organs, GPx1 mRNA expression was 70 % to 90 % lower in Se deficiency than in Se sufficiency. GPx2 expression increased in jejunum and liver under Se deficiency and decreased in the colon. Se deficiency increased most colonic AE and PIIE compared to Se adequacy. Adequate and in particular supranutritive Se combined with GRA increased colonic AE and PIIE expression up to 3.72-fold. In the liver Se deficiency raised the expression of AE and PIIE up to 4.49-fold. GRA attenuated liver AE and PIIE response in Se deficiency. Expression- and correlation analyses revealed that Keap1 mRNA better reflects AE and PIIE gene expression than Nrf2 mRNA. We conclude that: (1) GPx1 sensitively indicates Se deficiency; (2) the influence of Se and Nrf2/Keap1 on GPx2 expression depends on the organ; (3) GRA combined with supranutritive Se may effectively protect against inflammation and colon cancer; (4) future investigations on AE and PIIE expression should consider the role of Keap1 to a higher extent.
Related JoVE Video
Characterization of a far upstream located promoter expressing the acetyl-CoA carboxylase-alpha in the brain of cattle.
Gene
Show Abstract
Hide Abstract
The expression of the bovine acetyl-CoA carboxylase-alpha-encoding gene (ACACA) was known to be controlled by three promoters. Here, we characterized a fourth promoter (PI) located 41 kb upstream of the adjacent nutritionally-regulated promoter PIA on bovine chromosome 19. Our results showed that PI is an intergenic promoter driving expression of ACACA and conceivably, by analogy with the homologous genomic arrangement in sheep a component of the chromatin-modifying complex gene (TADA2L). 5-RACE experiments defined the 3 boundary of the promoter and a novel exon 1 comprising 263 bp. It features at position +226 an ORF encoding an N-terminally extended ACC-? enzyme. The PI sequence is GC-rich, has no TATA box and CAAT box, similar to the homologous promoters in sheep, mouse and human. Expression profiles showed that PI is the promoter driving expression of the dominant ACACA-transcript in brain. Reporter gene assays in HC-11 cells indicated that deletion of extended promoter segments harboring putative cAMP response elements (CRE) clustered in the distal promoter region and specificity protein 1 (Sp1) attachment sites lowered PI activity.
Related JoVE Video
Influence of maternal low protein diet during pregnancy on hepatic gene expression signature in juvenile female porcine offspring.
Mol Nutr Food Res
Show Abstract
Hide Abstract
Epidemiological and experimental evidence indicates that maternal nutrition status contributes to long-term changes in the metabolic phenotype of the offspring, a process known as fetal programming.
Related JoVE Video
Effects of inadequate maternal dietary protein:carbohydrate ratios during pregnancy on offspring immunity in pigs.
BMC Vet. Res.
Show Abstract
Hide Abstract
Inadequate nutrition in utero may retard foetal growth and alter physiological development of offspring. This study investigated the effects of low and high protein diets fed to primiparous German Landrace sows throughout pregnancy on the immune function of their offspring at different ages. Sows were fed diets with adequate (AP, 12.1%; n?=?13), low (LP, 6.5%; n?=?15), or high (HP, 30%; n?=?14) protein content, made isoenergetic by varying carbohydrate levels. Cortisol, total protein and immunoglobulin (IgG, IgM, IgA) concentrations were measured in the blood of sows over the course of pregnancy. Cortisol, total protein, immunoglobulins, lymphocyte proliferation, immune cell counts, and cytokines were assessed in the blood of offspring at baseline and under challenging conditions (weaning; lipopolysaccharide (LPS) administration).
Related JoVE Video
Enhanced sensitivity of skeletal muscle growth in offspring of mice long-term selected for high body mass in response to a maternal high-protein/low-carbohydrate diet during lactation.
Eur J Nutr
Show Abstract
Hide Abstract
To investigate the effects of a high-protein/low-carbohydrate diet fed to mice of different genotypes during pregnancy and/or lactation on offspring skeletal muscle growth and metabolism.
Related JoVE Video
Phenotype selection reveals coevolution of muscle glycogen and protein and PTEN as a gate keeper for the accretion of muscle mass in adult female mice.
PLoS ONE
Show Abstract
Hide Abstract
We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2? (eIF2?) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.
Related JoVE Video
Transcriptional response of skeletal muscle to a low-protein gestation diet in porcine offspring accumulates in growth- and cell cycle-regulating pathways.
Physiol. Genomics
Show Abstract
Hide Abstract
Inadequate maternal protein supply during gestation represents an environmental factor that affects physiological signaling pathways with long-term consequences for growth, function, and structure of various tissues. Hypothesizing that the offsprings transcriptome is persistently altered by maternal diets, we used a porcine model to monitor the longitudinal expression changes in muscle to identify pathways relevant to fetal initiation of postnatal growth and development. German Landrace gilts were fed isoenergetic gestational diets containing 6.5% (LP) or 12.1% protein. The longissimus dorsi samples were collected from offspring at 94 days postconception (dpc) and 1, 28, and 188 days postnatum (dpn) for expression profiling. At 94 dpc, 1 dpn, and 28 dpn relatively few transcripts (<130) showed an altered abundance between the dietary groups. In fact, at 94 dpc genes of G2/M checkpoint regulation and mitotic roles of Polo-like kinases showed lowered transcript abundance in LP. At 188 dpn 677 transcripts were altered including those related to oxidative phosphorylation, citrate cycle, fatty acid metabolism (higher abundance in LP) and cell cycle regulation (lower abundance in LP). Correspondingly, transcriptional alterations during pre and postnatal development differed considerably among dietary groups, particularly for genes related to cell cycle regulation (G1/S and G2/M checkpoint regulation; cyclines), growth factor signaling (GH, IGF1, mTOR, RAN, VEGF, INSR), lipid metabolism, energy metabolism, and nucleic acid metabolism. In skeletal muscle, fetal programming related to maternal LP diets disturbed gene expression in growth-related pathways into adulthood. Diet-dependent gene expression may hamper proper development, thereby affecting signaling pathways related to energy utilization.
Related JoVE Video
Dietary protein restriction and excess of pregnant German Landrace sows induce changes in hepatic gene expression and promoter methylation of key metabolic genes in the offspring.
J. Nutr. Biochem.
Show Abstract
Hide Abstract
Maternal nutrition during gestation has important effects on offspring gene expression mediated by DNA methylation. In order to evaluate the effect of restricted and excess protein intake during gestation, hepatic gene expression and DNA methylation of key metabolic genes NR3C1, PPAR?, HMGCR, PGC1?, INSR and CYP2C34 were investigated. Liver samples of German Landrace offspring were collected at Gestational Day 95, at birth, at weaning and from finisher pigs. Gene expression in foetal liver revealed significant differences between the control group (CO) and the low-protein group (LP) in HMGCR (P<.0001), INSR (P=.0003), NR3C1 (P=.020) and PGC1? (P=.003). At birth INSR (P=.032), PPAR? (P=.0006) and CYP2C34 (P<.0001) showed significant differences between LP and CO. CYP2C34 was significantly increased in the high-protein group (HP) compared to CO (P=.001). At weaning, INSR was significantly higher expressed in LP than in CO (P=.018). HMGCR showed a significant decrease of transcript amount in HP compared to CO (P=.0006). Furthermore, we studied the question whether gene expression differences between distinct diet groups are a result of differential DNA methylation status. CpG sites in the 5-flanking region of CYP2C34 showed a significant positive correlation with transcript amount in LP (nt -137: R=0.67, P<.0001; nt -112: R=0.54, P=.003). In NR3C1 methylation, differences in the CpG island were negatively correlated with gene expression data in LP (R=-0.34, P=.032). The mean of methylation of PPAR? over CpG sites from nt -220 to -11 was significantly increased in the LP group compared with CO (P=.043). These data suggest an influence of DNA methylation in nutrient-dependent transcriptional regulation of NR3C1, PPAR? and CYP2C34.
Related JoVE Video
Interaction of C/EBP-beta and NF-Y factors constrains activity levels of the nutritionally controlled promoter IA expressing the acetyl-CoA carboxylase-alpha gene in cattle.
BMC Mol. Biol.
Show Abstract
Hide Abstract
The enzyme acetyl-CoA carboxylase-alpha (ACC-?) is rate limiting for de novo fatty acid synthesis. Among the four promoters expressing the bovine gene, promoter IA (PIA) is dominantly active in lipogenic tissues. This promoter is in principal repressed but activated under favorable nutritional conditions. Previous analyses already coarsely delineated the repressive elements on the distal promoter but did not resolve the molecular nature of the repressor. Knowledge about the molecular functioning of this repressor is fundamental to understanding the nutrition mediated regulation of PIA activity. We analyzed here the molecular mechanism calibrating PIA activity.
Related JoVE Video
A gestational high protein diet affects the abundance of muscle transcripts related to cell cycle regulation throughout development in porcine progeny.
PLoS ONE
Show Abstract
Hide Abstract
In various animal models pregnancy diets have been shown to affect offspring phenotype. Indeed, the underlying programming of development is associated with modulations in birth weight, body composition, and continual diet-dependent modifications of offspring metabolism until adulthood, producing the hypothesis that the offsprings transcriptome is permanently altered depending on maternal diet.
Related JoVE Video
High-protein-low-carbohydrate diet during pregnancy alters maternal plasma amino acid concentration and placental amino acid extraction but not fetal plasma amino acids in pigs.
Br. J. Nutr.
Show Abstract
Hide Abstract
A high protein-low-carbohydrate diet during pregnancy can cause intra-uterine growth restriction. However, its impact during pregnancy on maternal, umbilical and fetal plasma amino acid (AA) profiles is unknown. A maternal high-protein (30 %)-low-carbohydrate (HP-LC) diet was compared with isoenergetic standard (12·1 % crude protein; ST) and low-protein (6·5 %)-high-carbohydrate (LP-HC) diets fed to nulliparous pregnant sows to examine changes in AA concentrations in maternal, venous and arterial umbilical and fetal plasma in mid and late pregnancy. At 64 and 94 days of pregnancy (dp), sows underwent Caesarean section, and maternal, umbilical and fetal plasma samples were collected. The HP-LC diet mainly affected maternal plasma AA concentrations. Plasma concentrations of Ile and Val were increased and those of Ala, Glu and Gly were decreased (P ? 0·05) in HP-LC compared with ST sows at 64 and 94 dp. The LP-HC diet decreased fetal plasma Glu concentration compared with the ST diet at 94 dp. Substantial AA catabolism was reflected by increased (P ? 0·05) maternal and fetal plasma urea concentrations with the HP-LC compared with the ST and LP-HC diets at 94 dp. Fractional placental extraction of Val was higher whereas those of Ala, Gln and Glu were lower in the HP-LC compared with the ST sows at 64 and 94 dp (P ? 0·05). Reduced fetal mass at 94 dp was accompanied by reduced fetal extraction of Lys and Pro in the HP-LC group (P ? 0·05). In conclusion, a maternal HP-LC diet during pregnancy altered maternal plasma composition of many AA and modified placental AA extraction to compensate for imbalanced maternal nutrient intake.
Related JoVE Video
Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-SMC subunits of condensin I in liver and skeletal muscle.
Epigenetics
Show Abstract
Hide Abstract
Recent evidence indicates that maternal nutrition during pregnancy influences gene expression in offspring through epigenetic alterations. In the present study we evaluated the effect of protein excess and deficiency during porcine pregnancy on offspring hepatic and skeletal muscular expression patterns of key genes of methionine metabolism (DNMT1, DNMT3a, DNMT3b, BHMT, MAT2B and AHCYL1), condensin I subunit genes (NCAPD2, NCAPG and NCAPH), important for chromosome condensation and segregation, global DNA methylation and gene-specific DNA methylation. German Landrace sows were randomly assigned to control (CO), high protein (HP) and low protein (LP) diet groups. Tissue samples of offspring were collected from fetal (dpc95), newborn (dpn1), weanling (dpn28) and finisher pigs (dpn188). Gene expression of DNMT1, DNMT3a and DNMT3b was influenced by both HP and LP diets, indicating an involvement of DNA methylation in fetal programming by maternal protein supply. Moreover, hepatic global methylation was significantly affected by protein restriction at dpc95 (p = 0.004) and by protein excess at dpn188 (p = 0.034). Gene expression in fetal liver was significantly different between CO and LP for NCAPD2 (p = 0.0005), NCAPG (p = 0.0009) and NCAPH (p < 0.0001). In skeletal muscle, LP fetuses had significantly altered gene expression of NCAPD2 (p = 0.020) and NCAPH (p = 0.001), compared with CO. Furthermore, NCAPG was differentially methylated among LP, HP and CO; indeed, a significant positive correlation was detected with transcript amount in fetal pigs (r = 0.47, p = 0.002). These data demonstrate that both restriction and excess dietary protein during pregnancy alters the offsprings epigenetic marks and influences gene expression.
Related JoVE Video
A low protein diet during pregnancy provokes a lasting shift of hepatic expression of genes related to cell cycle throughout ontogenesis in a porcine model.
BMC Genomics
Show Abstract
Hide Abstract
In rodent models and in humans the impact of gestational diets on the offsprings phenotype was shown experimentally and epidemiologically. Adverse environmental conditions during fetal development provoke an intrauterine adaptive response termed fetal programming, which may lead to both persistently biased responsiveness to extrinsic factors and permanent consequences for the organismal phenotype. This leads to the hypothesis that the offsprings transcriptome exhibits short-term and long-term changes, depending on the maternal diet. In order to contribute to a comprehensive inventory of genes and functional networks that are targets of nutritional programming initiated during fetal life, we applied whole-genome microarrays for expression profiling in a longitudinal experimental design covering prenatal, perinatal, juvenile, and adult ontogenetic stages in a porcine model. Pregnant sows were fed either a gestational low protein diet (LP, 6% CP) or an adequate protein diet (AP, 12% CP). All offspring was nursed by foster sows receiving standard diets. After weaning, all offspring was fed standard diets ad libitum.
Related JoVE Video
The ketone body ?-hydroxybutyric acid influences agouti-related peptide expression via AMP-activated protein kinase in hypothalamic GT1-7 cells.
J. Endocrinol.
Show Abstract
Hide Abstract
?-Hydroxybutyric acid (BHBA) acts in the brain to influence feeding behaviour, but the underlying molecular mechanisms are unclear. GT1-7 hypothalamic cells expressing orexigenic agouti-related peptide (AGRP) were used to study the AMP-activated protein kinase (AMPK) pathway known to integrate dietary and hormonal signals for food intake regulation. In a 25?mM glucose culture medium, BHBA increased intracellular calcium concentrations and the expression of monocarboxylate transporter 1 (MCT1 (SLC16A1)). Phosphorylation of AMPK-? (PRKAA1 and PRKAA2) at Thr(172) was diminished after 2?h but increased after 4?h. Its downstream target, the mammalian target of rapamycin, was increasingly phosphorylated on Ser(2448) after 2?h but not changed after 4?h of BHBA treatment. After 4?h, BHBA treatment also increased Agrp mRNA expression. This increase was prevented by preincubation with the AMPK inhibitor Compound C. The inhibition of MCT1 activity by p-hydroxymercuribenzoate suppressed BHBA-stimulated AMPK phosphorylation but did not prevent BHBA-induced Agrp mRNA expression. This finding demonstrates that BHBA triggers the AMPK pathway resulting in orexigenic signalling under 25?mM glucose culture conditions. Under conditions of 5.5?mM glucose, however, BHBA marginally increased intracellular calcium but significantly decreased AMPK phosphorylation and Agrp mRNA expression, demonstrating that under physiological conditions BHBA reduces central orexigenic signalling.
Related JoVE Video
Intrauterine growth retarded progeny of pregnant sows fed high protein:low carbohydrate diet is related to metabolic energy deficit.
PLoS ONE
Show Abstract
Hide Abstract
High and low protein diets fed to pregnant adolescent sows led to intrauterine growth retardation (IUGR). To explore underlying mechanisms, sow plasma metabolite and hormone concentrations were analyzed during different pregnancy stages and correlated with litter weight (LW) at birth, sow body weight and back fat thickness. Sows were fed diets with low (6.5%, LP), adequate (12.1%, AP), and high (30%, HP) protein levels, made isoenergetic by adjusted carbohydrate content. At -5, 24, 66, and 108 days post coitum (dpc) fasted blood was collected. At 92 dpc, diurnal metabolic profiles were determined. Fasted serum urea and plasma glucagon were higher due to the HP diet. High density lipoprotein cholesterol (HDLC), %HDLC and cortisol were reduced in HP compared with AP sows. Lowest concentrations were observed for serum urea and protein, plasma insulin-like growth factor-I, low density lipoprotein cholesterol, and progesterone in LP compared with AP and HP sows. Fasted plasma glucose, insulin and leptin concentrations were unchanged. Diurnal metabolic profiles showed lower glucose in HP sows whereas non-esterified fatty acids (NEFA) concentrations were higher in HP compared with AP and LP sows. In HP and LP sows, urea concentrations were 300% and 60% of AP sows, respectively. Plasma total cholesterol was higher in LP than in AP and HP sows. In AP sows, LW correlated positively with insulin and insulin/glucose and negatively with glucagon/insulin at 66 dpc, whereas in HP sows LW associated positively with NEFA. In conclusion, IUGR in sows fed high protein:low carbohydrate diet was probably due to glucose and energy deficit whereas in sows with low protein:high carbohydrate diet it was possibly a response to a deficit of indispensable amino acids which impaired lipoprotein metabolism and favored maternal lipid disposal.
Related JoVE Video
Effect of gestational protein deficiency and excess on hepatic expression of genes related to cell cycle and proliferation in offspring from late gestation to finishing phase in pig.
Mol. Biol. Rep.
Show Abstract
Hide Abstract
Maternal diet during gestation is known to affect offspring phenotype induction. In the present study the influence of maternal protein restriction and excess during gestation on offspring candidate gene expression was analysed. German Landrace gilts were fed control, low protein (LP) or high protein (HP) diet throughout gestation (n = 18 per diet group). After birth piglets were cross-fostered and lactated by control diet fed nursing sows. Samples of offspring liver tissue were taken at foetal, newborn, weaning and finishing phase (n = 16, respectively). Transcript amount of selected candidate genes related to cell cycle and cell proliferation was estimated by quantitative real-time PCR. Maternal protein restriction influenced gene expression of candidate genes CCND2, GADD45B, GALK1, GSTP1, MARCKS, MGMT, NEAT1, PSEN1, SNX1 and TRPM7 in liver from foetuses, newborn piglets, weaned and/or finisher pigs. In the offspring of mothers fed a HP diet expression of target genes was affected exclusively in finisher pigs showing increased transcript amount of CCND2, GALK1, MARCKS, SNX1 and TRPM7. The results of the present study clearly show a long-lasting impact of the maternal protein supply during gestation on offspring candidate genes. Remarkably, effects of gestational HP diet became evident in finisher pigs while LP supply already alters genes expression in foetal tissue. Thus it is suggested that LP and HP supply affect the offspring in utero by different physiological mechanisms with the consequence of late effects in case of prenatal protein excess in contrast to early effects in case of protein restriction.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.