JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Altered dopamine homeostasis differentially affects mitochondrial voltage-dependent anion channels turnover.
Biochim. Biophys. Acta
PUBLISHED: 06-23-2014
Show Abstract
Hide Abstract
Altered dopamine homeostasis plays a key role in the pathogenesis of Parkinson's disease. The generation of reactive oxygen species by spontaneous dopamine oxidation impairs mitochondrial function, causing in turn an enhancement of oxidative stress. Recent findings have highlighted the role of mitochondrial outer membrane proteins in the regulation of the correct disposal of damaged mitochondria. Here, we report the effect of altered dopamine homeostasis on the mitochondrial functionality in human neuroblastoma SH-SY5Y cells, a cellular model widely used to reproduce impaired dopamine homeostasis. We observed that dopamine significantly and relevantly reduces VDAC1 and VDAC2 levels without any change in the mRNA levels. Although mitochondria are depolarized by dopamine and mitochondrial calcium influx is reduced, dysfunctional mitochondria are not removed by mitophagy as it would be expected. Thus, alteration of dopamine homeostasis induces a mitochondrial depolarization not counteracted by the mitophagy quality control. As a consequence, the elimination of VDACs may contribute to the altered mitochondrial disposal in PD pathogenesis, thus enhancing the role of oxidative stress.
Related JoVE Video
The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles.
J. Biol. Chem.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
The direct measurement of mitochondrial [Ca(2+)] with highly specific probes demonstrated that major swings in organellar [Ca(2+)] parallel the changes occurring in the cytosol and regulate processes as diverse as aerobic metabolism and cell death by necrosis and apoptosis. Despite great biological relevance, insight was limited by the complete lack of molecular understanding. The situation has changed, and new perspectives have emerged following the very recent identification of the mitochondrial Ca(2+) uniporter, the channel allowing rapid Ca(2+) accumulation across the inner mitochondrial membrane.
Related JoVE Video
Molecules and roles of mitochondrial calcium signaling.
Biofactors
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Mitochondrial Ca(2+) homeostasis is an important component of the calcium-mediated cellular response to extracellular stimuli. It controls key organelle functions, such as aerobic metabolism and the induction of apoptotic cell death, and shapes the spatiotemporal pattern of the cytosolic [Ca(2+)] increase. We here summarize both the main roles of Ca(2+) signals within mitochondria and the emerging molecular information that is starting to unravel the composition of the signaling apparatus and reveal potential pharmacological targets in this process of utmost pathophysiological relevance.
Related JoVE Video
Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models.
Skelet Muscle
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
A highly conserved signaling pathway involving insulin-like growth factor 1 (IGF1), and a cascade of intracellular components that mediate its effects, plays a major role in the regulation of skeletal muscle growth. A central component in this cascade is the kinase Akt, also called protein kinase B (PKB), which controls both protein synthesis, via the kinases mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3? (GSK3?), and protein degradation, via the transcription factors of the FoxO family. In this paper, we review the composition and function of this pathway in skeletal muscle fibers, focusing on evidence obtained in vivo by transgenic and knockout models and by muscle transient transfection experiments. Although this pathway is essential for muscle growth during development and regeneration, its role in adult muscle response to mechanical load is less clear. A full understanding of the operation of this pathway could help to design molecularly targeted therapeutics aimed at preventing muscle wasting, which occurs in a variety of pathologic contexts and in the course of aging.
Related JoVE Video
Signaling pathways in mitochondrial dysfunction and aging.
Mech. Ageing Dev.
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
Mitochondria are central players in the determination of cell life and death. They are essential for energy production, since most cellular ATP is produced in their matrix by the oxidative phosphorylation pathway. At the same time, mitochondria are the main regulators of apoptotic cell death, mediating both extrinsic (cell-surface receptor mediated) and intrinsic apoptotic pathways. Reactive oxygen species (ROS) accumulate as side products of the electron transport chain, causing mitochondrial damage. Non-functional mitochondria accumulate in aged individuals, and cell homeostasis is maintained by removing damaged mitochondria by an autophagic process called "mitophagy". In addition, mitochondrial ROS represent signaling molecules leading to autophagy, consisting in the bulk degradation of cytosolic portions. When cell homeostasis is perturbed, and cytosolic components are damaged, autophagy represents a defense mechanism aimed at removing non-functional proteins and organelles. If this is not sufficient, cell death occurs with distinct morphological hallmarks from apoptosis. This binary choice integrates a number of critical information converging on a number of common regulatory elements. In this review, the focus will be placed on the central role of mitochondria in the cross-talk between autophagy and apoptosis, highlighting the signaling pathways and molecular machinery impinging on these organelles.
Related JoVE Video
Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles.
J. Physiol. (Lond.)
PUBLISHED: 11-30-2009
Show Abstract
Hide Abstract
The mammalian genome contains three ancient sarcomeric myosin heavy chain (MYH) genes, MYH14/7b, MYH15 and MYH16, in addition to the two well characterized clusters of skeletal and cardiac MYHs. MYH16 is expressed in jaw muscles of carnivores; however the expression pattern of MYH14 and MYH15 is not known. MYH14 and MYH15 orthologues are present in frogs and birds, coding for chicken slow myosin 2 and ventricular MYH, respectively, whereas only MYH14 orthologues have been detected in fish. In all species the MYH14 gene contains a microRNA, miR-499. Here we report that in rat and mouse, MYH14 and miR-499 transcripts are detected in heart, slow muscles and extraocular (EO) muscles, whereas MYH15 transcripts are detected exclusively in EO muscles. However, MYH14 protein is detected only in a minor fibre population in EO muscles, corresponding to slow-tonic fibres, and in bag fibres of muscle spindles. MYH15 protein is present in most fibres of the orbital layer of EO muscles and in the extracapsular region of bag fibres. During development, MYH14 is expressed at low levels in skeletal muscles, heart and all EO muscle fibres but disappears from most fibres, except the slow-tonic fibres, after birth. In contrast, MYH15 is absent in embryonic and fetal muscles and is first detected after birth in the orbital layer of EO muscles. The identification of the expression pattern of MYH14 and MYH15 brings to completion the inventory of the MYH isoforms involved in sarcomeric architecture of skeletal muscles and provides an unambiguous molecular basis to study the contractile properties of slow-tonic fibres in mammals.
Related JoVE Video
Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation.
FASEB J.
PUBLISHED: 08-06-2009
Show Abstract
Hide Abstract
A better understanding of the signaling pathways that control muscle growth is required to identify appropriate countermeasures to prevent or reverse the loss of muscle mass and force induced by aging, disuse, or neuromuscular diseases. However, two major issues in this field have not yet been fully addressed. The first concerns the pathways involved in leading to physiological changes in muscle size. Muscle hypertrophy based on perturbations of specific signaling pathways is either characterized by impaired force generation, e.g., myostatin knockout, or incompletely studied from the physiological point of view, e.g., IGF-1 overexpression. A second issue is whether satellite cell proliferation and incorporation into growing muscle fibers is required for a functional hypertrophy. To address these issues, we used an inducible transgenic model of muscle hypertrophy by short-term Akt activation in adult skeletal muscle. In this model, Akt activation for 3 wk was followed by marked hypertrophy ( approximately 50% of muscle mass) and by increased force generation, as determined in vivo by ankle plantar flexor stimulation, ex vivo in intact isolated diaphragm strips, and in single-skinned muscle fibers. No changes in fiber-type distribution and resistance to fatigue were detectable. Bromodeoxyuridine incorporation experiments showed that Akt-dependent muscle hypertrophy was accompanied by proliferation of interstitial cells but not by satellite cell activation and new myonuclei incorporation, pointing to an increase in myonuclear domain size. We can conclude that during a fast hypertrophic growth myonuclear domain can increase without compromising muscle performance.
Related JoVE Video
Smad2 and 3 transcription factors control muscle mass in adulthood.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
Loss of muscle mass occurs in a variety of diseases, including cancer, chronic heart failure, aquired immunodeficiency syndrome, diabetes, and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis, and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover, recent results confirm that other transforming growth factor-beta (TGF-beta) members control muscle mass. Using genetic tools, we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGF-beta and induce an atrophy program that is muscle RING-finger protein 1 (MuRF1) independent. Furthermore, Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mammalian target of rapamycin (mTOR) signaling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation, especially when they are combined with IGF-1-Akt activators.
Related JoVE Video
Autophagy is required to maintain muscle mass.
Cell Metab.
PUBLISHED: 03-29-2009
Show Abstract
Hide Abstract
The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle clearance. In skeletal muscle, both systems are under FoxO regulation and their excessive activation induces severe muscle loss. Although altered autophagy has been observed in various myopathies, the specific role of autophagy in skeletal muscle has not been determined by loss-of-function approaches. Here, we report that muscle-specific deletion of a crucial autophagy gene, Atg7, resulted in profound muscle atrophy and age-dependent decrease in force. Atg7 null muscles showed accumulation of abnormal mitochondria, sarcoplasmic reticulum distension, disorganization of sarcomere, and formation of aberrant concentric membranous structures. Autophagy inhibition exacerbated muscle loss during denervation and fasting. Thus, autophagy flux is important to preserve muscle mass and to maintain myofiber integrity. Our results suggest that inhibition/alteration of autophagy can contribute to myofiber degeneration and weakness in muscle disorders characterized by accumulation of abnormal mitochondria and inclusions.
Related JoVE Video
Mitochondria as sensors and regulators of calcium signalling.
Nat. Rev. Mol. Cell Biol.
Show Abstract
Hide Abstract
During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.