JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Unique regulatory properties of mesangial cells are genetically determined in the rat.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Mesangial cells are glomerular cells of stromal origin. During immune complex mediated crescentic glomerulonephritis (Crgn), infiltrating and proliferating pro-inflammatory macrophages lead to crescent formation. Here we have hypothesised that mesangial cells, given their mesenchymal stromal origin, show similar immunomodulatory properties as mesenchymal stem cells (MSCs), by regulating macrophage function associated with glomerular crescent formation. We show that rat mesangial cells suppress conA-stimulated splenocyte proliferation in vitro, as previously shown for MSCs. We then investigated mesangial cell-macrophage interaction by using mesangial cells isolated from nephrotoxic nephritis (NTN)-susceptible Wistar Kyoto (WKY) and NTN-resistant Lewis (LEW) rats. We first determined the mesangial cell transcriptome in WKY and LEW rats and showed that this is under marked genetic control. Supernatant transfer results show that WKY mesangial cells shift bone marrow derived macrophage (BMDM) phenotype to M1 or M2 according to the genetic background (WKY or LEW) of the BMDMs. Interestingly, these effects were different when compared to those of MSCs suggesting that mesangial cells can have unique immunomodulatory effects in the kidney. These results demonstrate the importance of the genetic background in the immunosuppressive effects of cells of stromal origin and specifically of mesangial cell-macrophage interactions in the pathophysiology of crescentic glomerulonephritis.
Related JoVE Video
Mesenchymal stem cells and innate tolerance: biology and clinical applications.
Swiss Med Wkly
PUBLISHED: 11-27-2010
Show Abstract
Hide Abstract
The properties of mesenchymal stem cells (MSC) have been widely investigated during the last decade, from their differentiation capacity to their immunosuppressive effect on any type of immune cell. These properties have been successfully harnessed for the treatment of inflammatory diseases such as graft versus host disease (GvHD). Different mechanisms have been proposed for their immunosuppressive properties, although it seems likely that they are used in concert. The inflammatory environment to which MSC are exposed plays a pivotal role in activating their functions. Conversely, the interplay of MSC with the immunoregulatory networks recruited during inflammation is fundamental to the delivery of immunosuppression. Since other types of terminally differentiated stromal cells share these properties, it is plausible that stemness is not a required feature. Therefore these functions may be involved in the physiological control of acute inflammation in various tissues. These notions highlight the importance of investigating the role of stromal cells as modulators of immune responses.
Related JoVE Video
Impact of ?-chain cytokines on EBV-specific T cell cultures.
J Transl Med
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
Recent preclinical adoptive immunotherapy studies in murine models prompt to employ "proper" rather than "as many as possible" antigen-specific T cells to gain better therapeutic results. Ideally, "proper" T cells are poorly differentiated in vitro, but retain the capacity to fully differentiate into effector cells in vivo, where they can undergo long-term survival and strong proliferation. Such requirements can be achieved by modifying culture conditions, namely using less "differentiating" cytokines than IL-2.
Related JoVE Video
Increased HDAC1 deposition at hematopoietic promoters in AML and its association with patient survival.
Leuk. Res.
PUBLISHED: 07-12-2010
Show Abstract
Hide Abstract
Epigenetic changes play a crucial role in leukemogenesis. HDACs are frequently recruited to target gene promoters by balanced translocation derived oncogenic fusion proteins. As important epigenetic effector mechanisms, histone deacetylases (HDAC) have emerged as potential therapeutic targets. However, the patterns of HDAC1 localization and the role of HDACs in leukemia pathogenesis remain to be elucidated. Using ChIP-Chip analyses we analyzed HDAC1 deposition patterns at more than 10,000 gene promoters in a large cohort of leukemia patients and CD34+ controls. HDAC1 binding was significantly increased in AML blasts compared to CD34+ progenitor cells at 130 gene promoters whereas decreased binding was observed at 66 gene promoters. Distinct HDAC1 binding patterns occurred in AML subtypes with balanced translocations t(15;17), t(8;21) and inv(16). In addition, a more generalized signature was established, that revealed an AML specific pattern of HDAC1 distribution. Many of the HDAC1-binding altered promoters regulate genes involved in hematopoiesis, transcriptional regulation and signal transduction. HDAC1 binding patterns were associated with patients event free survival. This is the first study to determine HDAC1 modification patterns in a large number of AML and ALL specimens. Our findings suggest that dyslocalization of HDAC1 is a common feature in AML. Importantly, HDAC1 modifications possess prognostic power for patient survival. Our findings suggest that altered HDAC1 localization is an explanation for the observed benefit of HDAC inhibitors in AML therapy.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.