JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity.
ACS Nano
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
Because existing therapeutic cancer vaccines provide only a limited clinical benefit, a different vaccination strategy is necessary to improve vaccine efficacy. We developed a nanoparticulate cancer vaccine by encapsulating a synthetic long peptide antigen within an immunologically inert nanoparticulate hydrogel (nanogel) of cholesteryl pullulan (CHP). After subcutaneous injection to mice, the nanogel-based vaccine was efficiently transported to the draining lymph node, and was preferentially engulfed by medullary macrophages but was not sensed by other macrophages and dendritic cells (so-called "immunologically stealth mode"). Although the function of medullary macrophages in T cell immunity has been unexplored so far, these macrophages effectively cross-primed the vaccine-specific CD8(+) T cells in the presence of a Toll-like receptor (TLR) agonist as an adjuvant. The nanogel-based vaccine significantly inhibited in vivo tumor growth in the prophylactic and therapeutic settings, compared to another vaccine formulation using a conventional delivery system, incomplete Freund's adjuvant. We also revealed that lymph node macrophages were highly responsive to TLR stimulation, which may underlie the potency of the macrophage-oriented, nanogel-based vaccine. These results indicate that targeting medullary macrophages using the immunologically stealth nanoparticulate delivery system is an effective vaccine strategy.
Related JoVE Video
Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor.
PLoS ONE
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
Oncolytic virotherapy combined with immunomodulators is a novel noninvasive strategy for cancer treatment. In this study, we examined the tumoricidal effects of oncolytic HF10, a naturally occurring mutant of herpes simplex virus type-1, combined with an agonistic DTA-1 monoclonal antibody specific for the glucocorticoid-induced tumor necrosis factor receptor. Two murine tumor models were used to evaluate the therapeutic efficacies of HF10 virotherapy combined with DTA-1. The kinetics and immunological mechanisms of DTA-1 in HF10 infection were examined using flow cytometry and immunohistochemistry. Intratumoral administration of HF10 in combination with DTA-1 at a low dose resulted in a more vigorous attenuation of growth of the untreated contralateral as well as the treated tumors than treatment with either HF10 or DTA-1 alone. An accumulation of CD8(+) T cells, including tumor- and herpes simplex virus type-1-specific populations, and a decrease in the number of CD4(+) Foxp3(+) T regulatory cells were seen in both HF10- and DTA-1-treated tumors. Studies using Fc-digested DTA-1 and Fc? receptor knockout mice demonstrated the direct participation of DTA-1 in regulatory T cell depletion by antibody-dependent cellular cytotoxicity primarily via macrophages. These results indicated the potential therapeutic efficacy of a glucocorticoid-induced tumor necrosis factor receptor-specific monoclonal antibody in oncolytic virotherapy at local tumor sites.
Related JoVE Video
Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Interleukin 17 (IL-17) is a pleiotropic cytokine that acts on both immune and non-immune cells and is generally implicated in inflammatory and autoimmune diseases. Although IL-17 as well as their source, mainly but not limited to Th17 cells, is also abundant in the inflamed intestine, the role of IL-17 in inflammatory bowel disease remains controversial. In the present study, by using IL-17 knockout (KO) mice, we investigated the role of IL-17 in colitis, with special focus on the macrophage subpopulations. Here we show that IL-17KO mice had increased susceptibility to DSS-induced colitis which was associated with decrease in expression of mRNAs implicated in M2 and/or wound healing macrophages, such as IL-10, IL-1 receptor antagonist, arginase 1, cyclooxygenase 2, and indoleamine 2,3-dioxygenase. Lamina propria leukocytes from inflamed colon of IL-17KO mice contained fewer CD11b+Ly6C+MHC Class II+ macrophages, which were derived, at least partly, from blood monocytes, as compared to those of WT mice. FACS-purified CD11b+ cells from WT mice, which were more abundant in Ly6C+MHC Class II+ cells, expressed increased levels of genes associated M2/wound healing macrophages and also M1/proinflammatory macrophages. Depletion of this population by topical administration of clodronate-liposome in the colon of WT mice resulted in the exacerbation of colitis. These results demonstrate that IL-17 confers protection against the development of severe colitis through the induction of an atypical M2-like macrophage subpopulation. Our findings reveal a previously unappreciated mechanism by which IL-17 exerts a protective function in colitis.
Related JoVE Video
The Lewis X-related ?1,3-fucosyltransferase, Fut10, is required for the maintenance of stem cell populations.
J. Biol. Chem.
PUBLISHED: 08-28-2013
Show Abstract
Hide Abstract
Lewis X (Le(X), Gal?1-4(Fuc?1-3)GlcNAc) is a carbohydrate epitope that is present at the nonreducing terminus of sugar chains of glycoproteins and glycolipids, and is abundantly expressed in several stem cell populations. Le(X) antigen can be used in conjunction with fluorescence-activated cell sorting to isolate neurosphere-forming neural stem cells (NSCs) from embryonic mouse brains. However, its function in the maintenance and differentiation of stem cells remains largely unknown. In this study, we examined mice deficient for fucosyltransferase 9 (Fut9), which is thought to synthesize most, if not all, of the Le(X) moieties in the brain. We found that the number of NSCs was increased in the brain of Fut9(-/-) embryos, suggesting that Fut9-synthesized Le(X) is dispensable for the maintenance of NSCs. Another ?1,3-fucosyltransferase gene, fucosyltransferase 10 (Fut10), is expressed in the ventricular zone of the embryonic brain. Overexpression of Fut10 enhanced the self-renewal of NSCs. Conversely, suppression of Fut10 expression induced the differentiation of NSCs and embryonic stem cells. In addition, knockdown of Fut10 expression in the cortical ventricular zone of the embryonic brain by in utero electroporation of Fut10-miRNAs impaired the radial migration of neural precursor cells. Our data suggest that Fut10 is involved in a unique ?1,3-fucosyltransferase activity with stringent substrate specificity, and that this activity is required to maintain stem cells in an undifferentiated state.
Related JoVE Video
Establishment of animal models to analyze the kinetics and distribution of human tumor antigen-specific CD8? T cells.
Vaccine
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
Many patients develop tumor antigen-specific T cell responses detectable in peripheral blood mononuclear cells (PBMCs) following cancer vaccine. However, measurable tumor regression is observed in a limited number of patients receiving cancer vaccines. There is a need to re-evaluate systemically the immune responses induced by cancer vaccines. Here, we established animal models targeting two human cancer/testis antigens, NY-ESO-1 and MAGE-A4. Cytotoxic T lymphocyte (CTL) epitopes of these antigens were investigated by immunizing BALB/c mice with plasmids encoding the entire sequences of NY-ESO-1 or MAGE-A4. CD8(+) T cells specific for NY-ESO-1 or MAGE-A4 were able to be detected by ELISPOT assays using antigen presenting cells pulsed with overlapping peptides covering the whole protein, indicating the high immunogenicity of these antigens in mice. Truncation of these peptides revealed that NY-ESO-1-specific CD8(+) T cells recognized D(d)-restricted 8mer peptides, NY-ESO-181-88. MAGE-A4-specific CD8(+) T cells recognized D(d)-restricted 9mer peptides, MAGE-A4265-273. MHC/peptide tetramers allowed us to analyze the kinetics and distribution of the antigen-specific immune responses, and we found that stronger antigen-specific CD8(+) T cell responses were required for more effective anti-tumor activity. Taken together, these animal models are valuable for evaluation of immune responses and optimization of the efficacy of cancer vaccines.
Related JoVE Video
Peptide vaccine induces enhanced tumor growth associated with apoptosis induction in CD8+ T cells.
J. Immunol.
PUBLISHED: 08-23-2010
Show Abstract
Hide Abstract
CD8(+) CTLs play a critical role in antitumor immunity. However, vaccination with synthetic peptide containing CTL epitopes has not been generally effective in inducing protective antitumor immunity. In this study, we addressed the detailed mechanism(s) involved in this failure using a new tumor model of BALB/c transplanted tumors expressing NY-ESO-1, an extensively studied human cancer/testis Ag. Whereas peptide immunization with an H2-D(d)-restricted CTL epitope derived from NY-ESO-1 (NY-ESO-1 p81-88) induced NY-ESO-1(81-88)-specific CD8(+) T cells in draining lymph nodes and spleens, tumor growth was significantly enhanced. Single-cell analysis of specific CD8(+) T cells revealed that peptide immunization caused apoptosis of >80% of NY-ESO-1(81-88)-specific CD8(+) T cells at tumor sites and repetitive immunization further diminished the number of specific CD8(+) T cells. This phenomenon was associated with elevated surface expression of Fas and programmed death-1. When peptide vaccination was combined with an adjuvant, a TLR9 ligand CpG, the elevated Fas and programmed death-1 expression and apoptosis induction were not observed, and vaccine with peptide and CpG was associated with strong tumor growth inhibition. Selection of appropriate adjuvants is essential for development of effective cancer vaccines, with protection of effector T cells from peptide vaccine-induced apoptosis being a prime objective.
Related JoVE Video
Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals.
Clin. Cancer Res.
PUBLISHED: 05-11-2010
Show Abstract
Hide Abstract
Blockade of CTL-associated antigen-4 (CTLA-4), an inhibitory immunomodulatory molecule on T cells, has been shown to enhance T-cell responses and induce tumor rejection, and a number of clinical trials with anti-CTLA-4 blocking monoclonal antibody (mAb) are under way. However, accumulating evidence indicates that anti-CTLA-4 mAb increases the number of CD4+CD25+Foxp3+ regulatory T cells (Treg) and that anti-CTLA4 mAb alone is often insufficient to reject established tumors in mice and humans. Thus, finding maneuvers to control Tregs and other immunosuppressive mechanisms remains a critical challenge.
Related JoVE Video
In vitro effects of bisphenol A on developing hypothalamic neurons.
Toxicology
PUBLISHED: 02-19-2010
Show Abstract
Hide Abstract
Estradiol plays an essential role in sexual differentiation of the rodent hypothalamus. Endocrine disruptors with estrogenic activity such as bisphenol A (BPA) are reported to disturb sexual differentiation of the hypothalamus. The purpose of the present study was to examine in vitro effects of BPA on developing hypothalamic neurons by focusing on a presynaptic protein synapsin I and microtubule-associated protein 2 (MAP2). In cultured hypothalamic cells from fetal rats, treatment with BPA enhanced both dendritic and synaptic development, as evidenced by increases in the area of dot-like staining of synapsin I and MAP2-positive area. An estrogen receptor (ER) antagonist, ICI 182,780, only partially blocked BPA-induced increase in the synapsin I-area, while it suppressed the MAP2-area increased by BPA. A specific ERK inhibitor, U0126, reduced the synapsin I-area without affecting the MAP2-area. BPA significantly decreased protein levels of synapsin I phosphorylated at Ser-9 and Ser-603. These findings indicate that BPA-inducing effects on dendritic and synaptic development are mediated by different molecular pathways.
Related JoVE Video
Effects of estrogen on synapsin I distribution in developing hypothalamic neurons.
Neurosci. Res.
PUBLISHED: 09-01-2009
Show Abstract
Hide Abstract
Estradiol (17beta-estradiol, E(2)) plays an essential role in sexual differentiation of the rodent brain. The purpose of the present study was to investigate the effects of E(2) on developing hypothalamic neurons by focusing on a presynaptic protein, synapsin I. We applied E(2) to cultured hypothalamic cells removed from fetal rats and investigated resultant effects upon synapsin I. Our immunocytochemical study revealed that administration of E(2) increased the dendritic area (MAP2-area) and synaptic area detected as dot-like staining of synapsin I (synapsin I-area). However, immunoblotting and real-time PCR showed that E(2) did not increase both protein and mRNA expression levels of synapsin I. Studies with cyclohexamide (CHX), membrane impermeable E(2) (E(2)-BSA), and an estrogen receptor (ER) antagonist ICI 182,780 indicated that E(2) affected the synapsin I-area mainly via a non-genomic pathway mediated by membrane ER. Immunoblotting showed that E(2) suppressed phosphorylation of synapsin I at residues Ser-9, Ser-553, and Ser-603. On the other hand, E(2) did not affect phosphorylation of synapsin I at Ser-62, Ser-67 and Ser-549. The present study suggests that E(2) affects localization of synapsin I in hypothalamic neurons by altering site-specific phosphorylation of synapsin I, which is likely mediated by membrane ER.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.