JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
[Life cycle of magnetic nanoparticles in the organism].
Biol Aujourdhui
PUBLISHED: 09-08-2014
Show Abstract
Hide Abstract
The use of nanomaterials drastically increases and yet their behavior in living organisms remains poorly examined. At the same time a better comprehension of the interactions between nanoparticles and the biological environment would allow us to limit potential nanoparticle-based toxicity and fully exploit nanoparticles medical applications. In this perspective, it is high time we develop methods to detect, quantify and follow the evolution of nanoparticles in the complex biological environment, spanning all relevant scales from the nanometer up to the tissue level. In this work we follow the life cycle of magnetic nanoparticles in vivo, focusing on their transformations over time from administration to elimination. As opposed to traditional nano-toxicological approaches, we herein take the nanoparticle perspective and try to establish how biological environment might impact the particles properties and their fate (interaction with proteins, cell confinement, degradation...) from their initial state to a series of changes a nanoparticle might undergo on its journey throughout the organism.
Related JoVE Video
Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy.
Nanoscale
PUBLISHED: 07-31-2014
Show Abstract
Hide Abstract
Despite the importance of gold-palladium nanoalloys in heterogeneous catalysis, the phase stability of Au-Pd alloys still remains unclear. We report here on the alloying and chemical ordering in epitaxially-grown and post-annealed gold-palladium nanoparticles (NPs) using aberration-corrected transmission electron microscopy. Au-Pd NPs with a controlled size, composition and structure were grown by pulsed laser deposition on freshly-cleaved NaCl(001) single crystals heated at 300 °C. After transfer to an amorphous carbon support, the NPs were annealed in vacuum at elevated temperatures above 400 °C for a few hours (6-10 hours) to promote chemical ordering. The as-grown NPs were mostly monocrystalline with a chemically-disordered face-centered cubic structure. Upon high-temperature annealing, a high degree of chemical ordering was observed in nanometer-sized NPs. Electron microscopy measurements showed that both L10 and L12 orders are stabilized in the Au-rich region of the Au-Pd phase diagram. These ordered phases exist at temperatures as high as 600 °C. Moreover, compositional analysis of single annealed particles revealed that the observed chemical ordering occurs in parallel to a two-tiered Ostwald ripening process. Due to this ripening process, a clear dependence between chemical composition and particle size is established during annealing with an enrichment in Pd as the NPs grow in size. Our results, besides clarifying some controversial aspects about long-range order in Au-Pd alloys, shed light on the structural stability of Au-Pd nanoalloys at elevated temperatures.
Related JoVE Video
Biodegradation mechanisms of iron oxide monocrystalline nanoflowers and tunable shield effect of gold coating.
Small
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
Understanding the relation between the structure and the reactivity of nanomaterials in the organism is a crucial step towards efficient and safe biomedical applications. The multi-scale approach reported here, allows following the magnetic and structural transformations of multicore maghemite nanoflowers in a medium mimicking intracellular lysosomal environment. By confronting atomic-scale and macroscopic information on the biodegradation of these complex nanostuctures, we can unravel the mechanisms involved in the critical alterations of their hyperthermic power and their Magnetic Resonance imaging T1 and T2 contrast effect. This transformation of multicore nanoparticles with outstanding magnetic properties into poorly magnetic single core clusters highlights the harmful influence of cellular medium on the therapeutic and diagnosis effectiveness of iron oxide-based nanomaterials. As biodegradation occurs through surface reactivity mechanism, we demonstrate that the inert activity of gold nanoshells can be exploited to protect iron oxide nanostructures. Such inorganic nanoshields could be a relevant strategy to modulate the degradability and ultimately the long term fate of nanomaterials in the organism.
Related JoVE Video
Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring.
ACS Nano
PUBLISHED: 05-07-2013
Show Abstract
Hide Abstract
The long-term fate of nanomaterials in biological environment represents a critical matter, which determines environmental effects and potential risks for human health. Predicting these risks requires understanding of nanoparticle transformations, persistence, and degradation, some issues somehow ignored so far. Safe by design, inorganic nanostructures are being envisioned for therapy, yet fundamental principles of their processing in biological systems, change in physical properties, and in situ degradability have not been thoroughly assessed. Here we report the longitudinal visualization of iron oxide nanocube transformations inflicted by the intracellular-like environment. Structural degradation of individual nanocubes with two different surface coatings (amphiphilic polymer shell and polyethylene glycol ligand molecules) was monitored at the atomic scale with aberration-corrected high-resolution transmission electron microscopy. Our results suggest that the polymer coating controls surface reactivity and that availability and access of chelating agents to the crystal surface govern the degradation rate. This in situ study of single nanocube degradation was compared to intracellular transformations observed in mice over 14 days after intravenous injection, revealing the role of nanoparticle clustering, intracellular sorting within degradation compartments, and iron transfer and recycling into ferritin storage proteins. Our approach reduces the gap between in situ nanoscale observations in mimicking biological environments and in vivo real tracking of nanoparticle fate.
Related JoVE Video
Direct imaging and chemical analysis of unstained DNA origami performed with a transmission electron microscope.
Chem. Commun. (Camb.)
PUBLISHED: 07-18-2011
Show Abstract
Hide Abstract
Here, we report a simple and rapid characterisation technique combining physical and chemical analysis for DNA origami with conventional TEM.
Related JoVE Video
Long term in vivo biotransformation of iron oxide nanoparticles.
Biomaterials
PUBLISHED: 02-03-2011
Show Abstract
Hide Abstract
The long term outcome of nanoparticles in the organism is one of the most important concerns raised by the development of nanotechnology and nanomedicine. Little is known on the way taken by cells to process and degrade nanoparticles over time. In this context, iron oxide superparamagnetic nanoparticles benefit from a privileged status, because they show a very good tolerance profile, allowing their clinical use for MRI diagnosis. It is generally assumed that the specialized metabolism which regulates iron in the organism can also handle iron oxide nanoparticles. However the biotransformation of iron oxide nanoparticles is still not elucidated. Here we propose a multiscale approach to study the fate of nanomagnets in the organism. Ferromagnetic resonance and SQUID magnetization measurements are used to quantify iron oxide nanoparticles and follow the evolution of their magnetic properties. A nanoscale structural analysis by electron microscopy complements the magnetic follow-up of nanoparticles injected to mice. We evidence the biotransformation of superparamagnetic maghemite nanoparticles into poorly-magnetic iron species probably stored into ferritin proteins over a period of three months. A putative mechanism is proposed for the biotransformation of iron-oxide nanoparticles.
Related JoVE Video
Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.
ACS Nano
Show Abstract
Hide Abstract
In the pursuit of optimized magnetic nanostructures for diagnostic and therapeutic applications, the role of nanoparticle architecture has been poorly investigated. In this study, we demonstrate that the internal collective organization of multi-core iron oxide nanoparticles can modulate their magnetic properties in such a way as to critically enhance their hyperthermic efficiency and their MRI T(1) and T(2) contrast effect. Multi-core nanoparticles composed of maghemite cores were synthesized through a polyol approach, and subsequent electrostatic colloidal sorting was used to fractionate the suspensions by size and hence magnetic properties. We obtained stable suspensions of citrate-stabilized nanostructures ranging from single-core 10 nm nanoparticles to multi-core magnetically cooperative 30 nm nanoparticles. Three-dimensional oriented attachment of primary cores results in enhanced magnetic susceptibility and decreased surface disorder compared to individual cores, while preserving a superparamagnetic-like behavior of the multi-core structures and potentiating thermal losses. Exchange coupling in the multi-core nanoparticles modifies the dynamics of the magnetic moment in such a way that both the longitudinal and transverse NMR relaxivities are also enhanced. Long-term MRI detection of tumor cells and their efficient destruction by magnetic hyperthermia can be achieved thanks to a facile and nontoxic cell uptake of these iron oxide nanostructures. This study proves for the first time that cooperative magnetic behavior within highly crystalline iron oxide superparamagnetic multi-core nanoparticles can improve simultaneously therapeutic and diagnosis effectiveness over existing nanostructures, while preserving biocompatibility.
Related JoVE Video
Performances of an 80-200 kV microscope employing a cold-FEG and an aberration-corrected objective lens.
Microscopy (Oxf)
Show Abstract
Hide Abstract
The performances of a newly developed 80-200 kV cold field emission gun (CFEG) transmission electron microscope (TEM) integrating a spherical aberration corrector for a TEM image-forming lens have been evaluated. To begin, we show that the stability of both emission and probe currents makes use of this new CFEG much friendlier. The energy spread of electrons emitted from the CFEG has been measured as a function of emission current and shows a very last 0.26 eV energy resolution at 200 kV and even 0.23 eV at 80 kV. The combination of the CFEG and the CEOS™ aberration corrector, associated with enhanced mechanical and electrical stabilities of this new microscope, allows reaching an information transfer below 75 pm at 200 and 80 pm at 80 kV. This unseen resolution at 200 kV has allowed us to study the structure of CoPt nanoparticles by observing direct images of their atomic arrangement along the high indexes zone axis. We have evidenced the presence of defects in these nanostructures that are not parallel to the electron beam. The precise stoichiometry of two iron oxides, FeO and Fe2O3, has been determined from an analysis of iron valence state that was obtained from a direct analysis of EELS fine structures spectrum of the two oxides.
Related JoVE Video
Transition from core-shell to Janus chemical configuration for bimetallic nanoparticles.
Nanoscale
Show Abstract
Hide Abstract
In order to determine the possibilities to control the chemical configuration of bimetallic nanoparticles, we have considered CuAg nanoparticles synthesized by a physical route as a model in this study. The synthesis was made by pulsed laser deposition under ultra-high vacuum conditions, via a sequential deposition procedure. We show that the temperature of the substrate and the absolute quantity of Ag in a particle are the main parameters that drive the chemical configuration. To explain the transition from a core-shell configuration to a Janus configuration as a function of Ag quantity, we have conducted density-functional theory calculations and atomistic molecular dynamics simulations to investigate the stability of this system. The results are presented together with the experimental observations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.