JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Controlling quantum-dot light absorption and emission by a surface-plasmon field.
Opt Express
PUBLISHED: 11-18-2014
Show Abstract
Hide Abstract
The possibility for controlling both the probe-field optical gain and absorption, as well as photon conversion by a surface-plasmon-polariton near field is explored for a quantum dot located above a metal surface. In contrast to the linear response in the weak-coupling regime, the calculated spectra show an induced optical gain and a triply-split spontaneous emission peak resulting from the interference between the surface-plasmon field and the probe or self-emitted light field in such a strongly-coupled nonlinear system. Our result on the control of the mediated photon-photon interaction, very similar to the 'gate' control in an optical transistor, may be experimentally observable and applied to ultra-fast intrachip/interchip optical interconnects, improvement in the performance of fiber-optic communication networks, and developments of optical digital computers and quantum communications.
Related JoVE Video
Order-of-magnitude enhancement of intersubband photoresponse in a plasmonic quantum dot system.
Opt Lett
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
The unprecedented ability of metallic subwavelength structures to confine and concentrate light into subwavelength spaces has led to new physics and exploration of novel devices. In this Letter, we demonstrate a 20 times enhancement of intersubband photoresponse in a InAs quantum dot (QD) system due to evanescently coupled plasmonic field. The resulting enhancement is accompanied by significant narrowing of photoresponse linewidth. The strong enhancement is attributed to efficient coupling of incident field to surface modes and to QDs, the presence of polarization-dependent absorption from QDs, and a fairly strong plasmon-QD interaction.
Related JoVE Video
Anisotropic plasmon-coupling dimerization of a pair of spherical electron gases.
J Phys Condens Matter
PUBLISHED: 03-13-2014
Show Abstract
Hide Abstract
We have discovered a novel feature in the plasmon excitations for a pair of Coulomb-coupled non-concentric spherical two-dimensional electron gases (S2DEGs). Our results show that the plasmon excitations for such pairs depend on the orientation with respect to the external electromagnetic probe field. The origin of this anisotropy of the inter-sphere Coulomb interaction is due to the directional asymmetry of the electrostatic coupling of electrons in excited states which depend on both the angular momentum quantum number L and its projection M on the axis of quantization taken as the probe E-field direction. We demonstrate the anisotropic inter-sphere Coulomb coupling in space and present semi-analytic results in the random-phase approximation both perpendicular and parallel to the axis of quantization. For the incidence of light with a finite orbital or spin angular momentum, the magnetic field generated from an induced oscillating electric dipole on one sphere can couple to an induced magnetic dipole on another sphere in a way that is dependent on whether the direction is parallel or perpendicular to the probe E field. Such an effect from the plasmon spatial correlation is expected to be experimentally observable by employing circularly polarized light or a helical light beam for incidence. The S2DEG serves as a simple model for fullerenes as well as metallic dimers, when the energy bands are far apart.
Related JoVE Video
Photon dressed electronic states in topological insulators: tunneling and conductance.
J Phys Condens Matter
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
We have obtained analytic results for the surface states of three-dimensional topological insulators in the presence of circularly polarized light. This electron-photon interaction results in an energy gap as well as a novel energy dispersion of the dressed electron-photon states, different from both graphene and the standard two-dimensional electron gas (2DEG). Additionally, we made calculations of the ballistic conductance and Klein tunneling in both two- and three-dimensional topological insulators as well as investigating how these phenomena are affected in the presence of circularly polarized light. We have found a critical energy for an incoming particle, separating two substantially different types of tunneling.
Related JoVE Video
Effects of nonlocal plasmons in gapped graphene micro-ribbon array and two-dimensional electron gas on near-field electromagnetic response in the deep subwavelength regime.
Appl Opt
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
A self-consistent theory involving Maxwells equations and a density-matrix linear-response theory is solved for an electromagnetically coupled doped graphene micro-ribbon array (GMRA) and a quantum well (QW) electron gas sitting at an interface between a half-space of air and another half-space of a doped semiconductor substrate, which supports a surface-plasmon mode in our system. The coupling between a spatially modulated total electromagnetic (EM) field and the electron dynamics in a Dirac-cone of a graphene ribbon, as well as the coupling of the far-field specular and near-field higher-order diffraction modes, are included in the derived electron optical-response function. Full analytical expressions are obtained with nonlocality for the optical-response functions of a two-dimensional electron gas and a graphene layer with an induced bandgap, and are employed in our numerical calculations beyond the long-wavelength limit (Drude model). Both the near-field transmissivity and reflectivity spectra, as well as their dependence on different configurations of our system and on the array period, ribbon width, graphene chemical potential of QW electron gas and bandgap in graphene, are studied. Moreover, the transmitted E-field intensity distribution is calculated to demonstrate its connection to the mixing of specular and diffraction modes of the total EM field. An externally tunable EM coupling among the surface, conventional electron-gas and massless graphene intraband plasmon excitations is discovered and explained. Furthermore, a comparison is made between the dependence of the graphene-plasmon energy on the ribbons width and chemical potential in this paper and the recent experimental observation given by [Nat. Nanotechnol.6, 630-634 (2011)] for a GMRA in the terahertz-frequency range.
Related JoVE Video
Graphene nanoribbons in criss-crossed electric and magnetic fields.
Philos Trans A Math Phys Eng Sci
PUBLISHED: 11-03-2010
Show Abstract
Hide Abstract
Graphene nanoribbons (GNRs) in mutually perpendicular electric and magnetic fields are shown to exhibit dramatic changes in their band structure and electron-transport properties. A strong electric field across the ribbon induces multiple chiral Dirac points, closing the semiconducting gap in armchair GNRs. A perpendicular magnetic field induces partially formed Landau levels as well as dispersive surface-bound states. Each of the applied fields on its own preserves the even symmetry E(k)=E(-k) of the sub-band dispersion. When applied together, they reverse the dispersion parity to be odd, which gives E(e,k)=-E(h,-k), and mix the electron and hole sub-bands within the energy range corresponding to the change in potential across the ribbon. This leads to oscillations of the ballistic conductance within this energy range. The broken time-reversal symmetry provides dichroism in the absorption of the circularly polarized light. As a consequence, one can observe electrically enhanced Faraday rotation, since the edges of the ribbon provide formation of the substantial density of states.
Related JoVE Video
A surface plasmon enhanced infrared photodetector based on InAs quantum dots.
Nano Lett.
PUBLISHED: 04-22-2010
Show Abstract
Hide Abstract
In this paper, we report a successful realization and integration of a gold two-dimensional hole array (2DHA) structure with semiconductor InAs quantum dot (QD). We show experimentally that a properly designed 2DHA-QD photodetector can facilitate a strong plasmonic-QD interaction, leading to a 130% absolute enhancement of infrared photoresponse at the plasmonic resonance. Our study indicates two key mechanisms for the performance improvement. One is an optimized 2DHA design that permits an efficient coupling of light from the far-field to a localized plasmonic mode. The other is the close spatial matching of the QD layers to the wave function extent of the plasmonic mode. Furthermore, the processing of our 2DHA is amenable to large scale fabrication and, more importantly, does not degrade the noise current characteristics of the photodetector. We believe that this demonstration would bring the performance of QD-based infrared detectors to a level suitable for emerging surveillance and medical diagnostic applications.
Related JoVE Video
Unimpeded tunneling in graphene nanoribbons.
J Phys Condens Matter
PUBLISHED: 03-30-2010
Show Abstract
Hide Abstract
We studied the Klein paradox in zigzag (ZNR) and anti-zigzag (AZNR) graphene nanoribbons. Due to the fact that ZNR (the number of lattice sites across the nanoribbon = N is even) and AZNR (N is odd) configurations are indistinguishable when treated by the Dirac equation, we supplemented the model with a pseudo-parity operator whose eigenvalues correctly depend on the sublattice wavefunctions for the number of carbon atoms across the ribbon, in agreement with the tight-binding model. We have shown that the Klein tunneling in zigzag nanoribbons is related to conservation of the pseudo-parity rather than pseudo-spin as in infinite graphene. The perfect transmission in the case of head-on incidence is replaced by perfect transmission at the center of the ribbon and the chirality is interpreted as the projection of the pseudo-parity on momentum at different corners of the Brillouin zone.
Related JoVE Video
Strong light concentration at the subwavelength scale by a metallic hole-array structure.
Opt Lett
PUBLISHED: 02-27-2009
Show Abstract
Hide Abstract
A metallic two-dimensional hole-array (2DHA) sample is successfully fabricated and its transmission property measured at mid-infrared wavelengths (lambda ~ 1.5-20 microm). At the plasmonic resonance, the 2DHA sample exhibits a normal incidence transmittance of 80% at lambda = 7.6 microm. This corresponds to more than twice as much light that is transmitted as it impinges directly on the holes at the maxima of transmittance. This exceedingly large enhancement is attributed to a strong plasmonic resonance and an effective light concentration through an ultrathin metal film of 50 nm. This advancement will pave the way to a much enhanced infrared detection using a simple and compact 2DHA architecture.
Related JoVE Video
Asymmetrically filled slits in a metal film that split a light beam into two depending on its wavelength.
Appl Opt
Show Abstract
Hide Abstract
By applying a scattering-wave theory, the electromagnetic response of an arbitrary array of multiple slits perforated on a metallic film and filled with different slit dielectric materials can be studied in an analytical way. Here, the wavelength-dependent splitting of a light beam into two by asymmetrically filled slits in a metal film using intraslit and interslit dual-wave interferences is fully explored. We consider a triple-slit structure perforated on a gold film, where the middle slit is used for the surface-plasmon (SP) excitation by a narrow Gaussian beam while the two side slits are used for the detection of a transmitted SP wave propagated from the middle opaque slit either at a particular wavelength or at double that wavelength, respectively. For this proposed simple structure, we show that only one of the two side observation slits can be in a passing state for a particular wavelength, but the other blocked slit will change to a passing state at double that wavelength with a specific design for the slit depth, slit dielectric, and interslit distance in the deep subwavelength regime. In this sense, SP mediated light transmission becomes wavelength sensitive in our model, and a single light beam can be separated into two according to its wavelength in the transverse direction parallel to the array. This provides us with a unique way for direct optical reading in the near-field region using a nonspectroscopic approach.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.