JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Influenza virus non-structural protein NS1: interferon antagonism and beyond.
J. Gen. Virol.
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.
Related JoVE Video
Protection patterns in duck and chicken after homo- or hetero-subtypic reinfections with H5 and H7 low pathogenicity avian influenza viruses: a comparative study.
PLoS ONE
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
Avian influenza viruses are circulating continuously in ducks, inducing a mostly asymptomatic infection, while chickens are accidental hosts highly susceptible to respiratory disease. This discrepancy might be due to a different host response to the virus between these two bird species and in particular to a different susceptibility to reinfection. In an attempt to address this question, we analyzed, in ducks and in chickens, the viral load in infected tissues and the humoral immune response after experimental primary and secondary challenge infections with either homologous or heterologous low pathogenicity avian influenza viruses (LPAIV). Following homologous reinfection, ducks were only partially protected against viral shedding in the lower intestine in conjunction with a moderate antibody response, whereas chickens were totally protected against viral shedding in the upper respiratory airways and developed a stronger antibody response. On the contrary, heterologous reinfection was not followed by a reduced viral excretion in the upper airways of chickens, while ducks were still partially protected from intestinal excretion of the virus, with no correlation to the antibody response. Our comparative study provides a comprehensive demonstration of the variation of viral tropism and control of the host humoral response to LPAIV between two different bird species with different degrees of susceptibility to avian influenza.
Related JoVE Video
Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens.
J. Gen. Virol.
PUBLISHED: 04-02-2014
Show Abstract
Hide Abstract
Currently circulating H5N1 influenza viruses have undergone a complex evolution since the appearance of their progenitor A/Goose/Guangdong/1/96 in 1996. After the eradication of the H5N1 viruses that emerged in Hong Kong in 1997 (HK/97 viruses), new genotypes of H5N1 viruses emerged in the same region in 2000 that were more pathogenic for both chickens and mice than HK/97 viruses. These, as well as virtually all highly pathogenic H5N1 viruses since 2000, harbour a deletion of aa 80-84 in the unstructured region of the non-structural (NS) protein NS1 linking its RNA-binding domain to its effector domain. NS segments harbouring this mutation have since been found in non-H5N1 viruses and we asked whether this 5 aa deletion could have a general effect not limited to the NS1 of H5N1 viruses. We genetically engineered this deletion in the NS segment of a duck-origin avian H1N1 virus, and compared the in vivo and in vitro properties of the WT and NSdel8084 viruses. In experimentally infected chickens, the NSdel8084 virus showed both an increased replication potential and an increased pathogenicity. This in vivo phenotype was correlated with a higher replicative efficiency in vitro, both in embryonated eggs and in a chicken lung epithelial cell line. Our data demonstrated that the increased replicative potential conferred by this small deletion was a general feature not restricted to NS1 from H5N1 viruses and suggested that viruses acquiring this mutation may be selected positively in the future.
Related JoVE Video
Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices.
Vet. Res.
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
Viral respiratory diseases remain of major importance in swine breeding units. Swine influenza virus (SIV) is one of the main known contributors to infectious respiratory diseases. The innate immune response to swine influenza viruses has been assessed in many previous studies. However most of these studies were carried out in a single-cell population or directly in the live animal, in all its complexity. In the current study we report the use of a trachea epithelial cell line (newborn pig trachea cells - NPTr) in comparison with alveolar macrophages and lung slices for the characterization of innate immune response to an infection by a European SIV of the H3N2 subtype. The expression pattern of transcripts involved in the recognition of the virus, interferon type I and III responses, and the host-response regulation were assessed by quantitative PCR in response to infection. Some significant differences were observed between the three systems, notably in the expression of type III interferon mRNA. Then, results show a clear induction of JAK/STAT and MAPK signaling pathways in infected NPTr cells. Conversely, PI3K/Akt signaling pathways was not activated. The inhibition of the JAK/STAT pathway clearly reduced interferon type I and III responses and the induction of SOCS1 at the transcript level in infected NPTr cells. Similarly, the inhibition of MAPK pathway reduced viral replication and interferon response. All together, these results contribute to an increased understanding of the innate immune response to H3N2 SIV and may help identify strategies to effectively control SIV infection.
Related JoVE Video
Postmortem imaging of sudden cardiac death.
Int. J. Legal Med.
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Postmortem imaging is increasingly used in forensic practice in cases of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. While radiological examination is generally considered to be a good complement for conventional autopsy, it was thought to have limited application in cardiovascular pathology. At present, multidetector computed tomography (MDCT), CT angiography, and cardiac magnetic resonance imaging (MRI) are used in postmortem radiological investigation of cardiovascular pathologies. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations. The radiological evaluation of ischemic heart disease (IHD), the most frequent cause of SCD in the general population of industrialized countries, includes the examination of the coronary arteries and myocardium. Postmortem CT angiography (PMCTA) is very useful for the detection of stenoses and occlusions of coronary arteries but less so for the identification of ischemic myocardium. MRI is the method of choice for the radiological investigation of the myocardium in clinical practice, but its accessibility and application are still limited in postmortem practice. There are very few reports implicating postmortem radiology in the investigation of other causes of SCD, such as cardiomyopathies, coronary artery abnormalities, and valvular pathologies. Cardiomyopathies representing the most frequent cause of SCD in young athletes cannot be diagnosed by echocardiography, the most widely available technique in clinical practice for the functional evaluation of the heart and the detection of cardiomyopathies. PMCTA and MRI have the potential to detect advanced stages of diseases when morphological substrate is present, but these methods have yet to be sufficiently validated for postmortem cases. Genetically determined channelopathies cannot be detected radiologically. This review underlines the need to establish the role of postmortem radiology in the diagnosis of SCD.
Related JoVE Video
Geometric modeling of pelvic organs.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 08-29-2011
Show Abstract
Hide Abstract
The pelvic floor can be subjected to different disorders, coming from a physiological change in the spatial configuration of the organs of interest: the bladder, the rectum, the uterus and the vagina. However, resort to surgery to replace them is complicated to achieve. In order to support the decision of the surgeon as to the invasive method to use for the patient, the MoDyPe (Pelvis Dynamics Modeling) project was launched, aiming at building a patient specific pelvic organ behavior. Our approach consists in creating thick surfaces of hollow organs, using periodic B-splines and offsets, then in controlling their discretization and in exporting a hexahedral model to provide input data for the study on the dynamics of the soft bodies of interest. From a segmentation step providing a dataset of 3D points, a function is built to measure the bidirectional distance between the surface and the data. It is minimized with an alternate iterative Hoschek-like method, by updating the parametric map and moving the control points. Several offsets of the base surface are then created to build up the thickness of the organ.
Related JoVE Video
Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides.
Nucleic Acids Res.
PUBLISHED: 07-07-2011
Show Abstract
Hide Abstract
Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5-GACACAAGCCGA-3 was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.
Related JoVE Video
A novel chicken lung epithelial cell line: characterization and response to low pathogenicity avian influenza virus.
Virus Res.
PUBLISHED: 04-22-2011
Show Abstract
Hide Abstract
Avian influenza virus (AIV) infections of the chicken occur via the respiratory route. Unlike ducks which are considered as a natural AIV reservoir, chickens are highly susceptible to AIV infections and do not possess the RIG-I pattern recognition receptor involved in triggering the antiviral interferon response. To study the chicken innate immune response to AIV in the respiratory tract, we established an epithelial cell line (CLEC213) from lung explants of white leghorn chickens. CLEC213 cells exhibited a polyhedral morphology and formed cohesive clusters bound through tight junctions as assessed by electron microscopy. Expression of E-cadherin but not vimentin could be detected as expected for cells of epithelial origin. In addition, CLEC213 cells showed characteristics similar to those of mammalian type II pneumocytes, including the presence of intracytoplasmic vacuoles filled with a mucopolysaccharide material, alkaline phosphatase activity, transcription of chicken lung collectins genes (cLL and SPA), and some intracytoplasmic lamellar-like bodies. CLEC213 cells showed a constitutive expression level of TLR3 and TLR4 and were responsive to stimulation with the respective agonists, poly (I:C) and LPS: between 4h and 24h after treatment, a strong increase in the expression of IFN-?, IFN-? and IL-8 genes could be detected. Furthermore, CLEC213 cells supported efficient growth of the low pathogenicity avian influenza virus H6N2 (A/duck/France/05057a/2005) in the presence or the absence of trypsin in the culture media. At 4h post-infection, the H6N2 virus induced highly elevated levels of expression of IFN-? and IL-8, moderately elevated levels of LITAF, TGF-?4 and CCL5. However, an increase of IFN-? gene expression could not be detected in response to AIV infection. In conclusion, like mammalian type II pneumocytes, CLEC213 are able to mount a robust cytokine and chemokine immune response to microbial patterns and viral infection. We hypothesize that they could derive from lung atrial granular cells. The involvement of such type of lung epithelial cells in the respiratory tract defence of the chicken can thus be further studied.
Related JoVE Video
SOCS proteins in infectious diseases of mammals.
Vet. Immunol. Immunopathol.
Show Abstract
Hide Abstract
As for most biological processes, the immune response to microbial infections has to be tightly controlled to remain beneficial for the host. Inflammation is one of the major consequences of the hosts immune response. For its orchestration, this process requires a fine-tuned interplay between interleukins, endothelial cells and various types of recruited immune cells. Suppressors of cytokine signalling (SOCS) proteins are crucially involved in the complex control of the inflammatory response through their actions on various signalling pathways including the JAK/STAT and NF-?B pathways. Due to their cytokine regulatory functions, they are frequent targets for exploitation by infectious agents trying to escape the hosts immune response. This review article aims to summarize our current knowledge regarding SOCS family members in the different mammalian species studied so far, and to display their complex molecular interactions with microbial pathogens.
Related JoVE Video
The RNA-binding domain of influenzavirus non-structural protein-1 cooperatively binds to virus-specific RNA sequences in a structure-dependent manner.
Nucleic Acids Res.
Show Abstract
Hide Abstract
Influenzavirus non-structural protein NS1 is involved in several steps of the virus replication cycle. It counteracts the interferon response, and also exhibits other activities towards viral and cellular RNAs. NS1 is known to bind non-specifically to double-stranded RNA (dsRNA) as well as to viral and cellular RNAs. We set out to search whether NS1 could preferentially bind sequence-specific RNA patterns, and performed an in vitro selection (SELEX) to isolate NS1-specific aptamers from a pool of 80-nucleotide(nt)-long RNAs. Among the 63 aptamers characterized, two families were found to harbour a sequence that is strictly conserved at the 5 terminus of all positive-strand RNAs of influenzaviruses A. We found a second virus-specific motif, a 9 nucleotide sequence located 15 nucleotides downstream from NS1s stop codon. In addition, a majority of aptamers had one or two symmetrically positioned copies of the 5-GUAAC / 3-CUUAG double-stranded motif, which closely resembles the canonical 5-splice site. Through an in-depth analysis of the interaction combining fluorimetry and gel-shift assays, we showed that NS1s RNA-binding domain (RBD) specifically recognizes sequence patterns in a structure-dependent manner, resulting in an intimate interaction with high affinity (low nanomolar to subnanomolar K(D) values) that leads to oligomerization of the RBD on its RNA ligands.
Related JoVE Video
Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens.
J. Gen. Virol.
Show Abstract
Hide Abstract
Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R(225)VESEV(230) at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1(230)) and a mutant virus with a truncated NS1 (H7N1(224)). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1(230) and H7N1(224) viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1(230) virus induced a more severe interstitial pneumonia than did the H7N1(224) virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.