JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Detection of T cell responses to a ubiquitous cellular protein in autoimmune disease.
Science
PUBLISHED: 10-18-2014
Show Abstract
Hide Abstract
T cells that mediate autoimmune diseases such as rheumatoid arthritis (RA) are difficult to characterize because they are likely to be deleted or inactivated in the thymus if the self antigens they recognize are ubiquitously expressed. One way to obtain and analyze these autoimmune T cells is to alter T cell receptor (TCR) signaling in developing T cells to change their sensitivity to thymic negative selection, thereby allowing their thymic production. From mice thus engineered to generate T cells mediating autoimmune arthritis, we isolated arthritogenic TCRs and characterized the self antigens they recognized. One of them was the ubiquitously expressed 60S ribosomal protein L23a (RPL23A), with which T cells and autoantibodies from RA patients reacted. This strategy may improve our understanding of the underlying drivers of autoimmunity.
Related JoVE Video
Lymphocyte Activation Gene-3 (LAG-3) negatively regulates environmentally-induced autoimmunity.
PLoS ONE
PUBLISHED: 08-14-2014
Show Abstract
Hide Abstract
Environmental factors including drugs, mineral oils and heavy metals such as lead, gold and mercury are triggers of autoimmune diseases in animal models or even in occupationally exposed humans. After exposure to subtoxic levels of mercury (Hg), genetically susceptible strains of mice develop an autoimmune disease characterized by the production of highly specific anti-nucleolar autoantibodies, hyperglobulinemia and nephritis. However, mice can be tolerized to the disease by a single low dose administration of Hg. Lymphocyte Activation Gene-3 (LAG-3) is a CD4-related, MHC-class II binding molecule expressed on activated T cells and NK cells which maintains lymphocyte homeostatic balance via various inhibitory mechanisms. In our model, administration of anti-LAG-3 monoclonal antibody broke tolerance to Hg resulting in autoantibody production and an increase in serum IgE level. In addition, LAG-3-deficient B6.SJL mice not only had increased susceptibility to Hg-induced autoimmunity but were also unresponsive to tolerance induction. Conversely, adoptive transfer of wild-type CD4(+) T cells was able to partially rescue LAG-3-deficient mice from the autoimmune disease. Further, in LAG-3-deficient mice, mercury elicited higher amounts of IL-6, IL-4 and IFN-?, cytokines known to play a critical role in mercury-induced autoimmunity. Therefore, we conclude that LAG-3 exerts an important regulatory effect on autoimmunity elicited by a common environmental pollutant.
Related JoVE Video
TCR affinity and tolerance mechanisms converge to shape T cell diabetogenic potential.
J. Immunol.
PUBLISHED: 06-18-2014
Show Abstract
Hide Abstract
Autoreactive T cells infiltrating the target organ can possess a broad TCR affinity range. However, the extent to which such biophysical parameters contribute to T cell pathogenic potential remains unclear. In this study, we selected eight InsB9-23-specific TCRs cloned from CD4(+) islet-infiltrating T cells that possessed a relatively broad range of TCR affinity to generate NOD TCR retrogenic mice. These TCRs exhibited a range of two-dimensional affinities (? 10(-4)-10(-3) ?m(4)) that correlated with functional readouts and responsiveness to activation in vivo. Surprisingly, both higher and lower affinity TCRs could mediate potent insulitis and autoimmune diabetes, suggesting that TCR affinity does not exclusively dictate or correlate with diabetogenic potential. Both central and peripheral tolerance mechanisms selectively impinge on the diabetogenic potential of high-affinity TCRs, mitigating their pathogenicity. Thus, TCR affinity and multiple tolerance mechanisms converge to shape and broaden the diabetogenic T cell repertoire, potentially complicating efforts to induce broad, long-term tolerance.
Related JoVE Video
Membrane association of the CD3? signaling domain is required for optimal T cell development and function.
J. Immunol.
PUBLISHED: 06-04-2014
Show Abstract
Hide Abstract
The TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3? cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3?-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations. Furthermore, positive, but not negative, T cell selection was affected in mice lacking a functional CD3?-BRS, which led to limited peripheral T cell function and substantially reduced responsiveness to influenza infection. Collectively, these results indicate that membrane association of the CD3? signaling domain is required for optimal thymocyte development and peripheral T cell function.
Related JoVE Video
Once a Treg, always a Treg?
Immunol. Rev.
PUBLISHED: 04-10-2014
Show Abstract
Hide Abstract
Regulatory T cells (Tregs) prevail as a specialized cell lineage that has a central role in the dominant control of immunological tolerance and maintenance of immune homeostasis. Thymus-derived Tregs (tTregs) and their peripherally induced counterparts (pTregs) are imprinted with unique Forkhead box protein 3 (Foxp3)-dependent and independent transcriptional and epigenetic characteristics that bestows on them the ability to suppress disparate immunological and non-immunological challenges. Thus, unidirectional commitment and the predominant stability of this regulatory lineage is essential for their unwavering and robust suppressor function and has clinical implications for the use of Tregs as cellular therapy for various immune pathologies. However, recent studies have revealed considerable heterogeneity or plasticity in the Treg lineage, acquisition of alternative effector or hybrid fates, and promotion rather than suppression of inflammation in extreme contexts. In addition, the absolute stability of Tregs under all circumstances has been questioned. Since these observations challenge the safety and efficacy of human Treg therapy, the issue of Treg stability versus plasticity continues to be enthusiastically debated. In this review, we assess our current understanding of the defining features of Foxp3(+) Tregs, the intrinsic and extrinsic cues that guide development and commitment to the Treg lineage, and the phenotypic and functional heterogeneity that shapes the plasticity and stability of this critical regulatory population in inflammatory contexts.
Related JoVE Video
Regulatory T cells limit induction of protective immunity and promote immune pathology following intestinal helminth infection.
J. Immunol.
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
Foxp3(+) regulatory T cells (Tregs) have a well-characterized role in limiting autoimmunity and dampening deleterious immune responses. However, a potential consequence of the immunosuppressive function of Tregs can be the limitation of protective immunity to infectious pathogens. Parasitic infections are a potent stimulus for the generation of Treg responses, which may be beneficial to both the parasite and the host by promoting persistence of infection and limiting immune-mediated pathology, respectively. In this study, we explore the functional role of Tregs post-low-dose infection with the intestinal helminth parasite Trichuris muris, which yields a chronic infection because of inefficient induction of Th2 responses. Early Treg depletion postinfection resulted in expedited worm clearance, and was associated with reduced Th1-mediated inflammation of the intestinal environment. Interestingly, this protective immunity was lost, and worm burden enhanced if Tregs were depleted later once the infection was established. Early and late Treg depletion resulted in enhanced Th2 and reduced Th1 cytokine and humoral responses. Blockade of the Th2 cytokine IL-4 resulted in a moderate increase in Th1 but had no effect on worm burden. Our findings suggest that Tregs preferentially limit Th2 cell expansion, which can impact infections where clear immune polarity has not been established. Thus, the impact of Treg depletion is context and time dependent, and can be beneficial to the host in situations where Th1 responses should be limited in favor of Th2 responses.
Related JoVE Video
Interview: Immunotherapeutic manipulation of the tumor microenvironment.
Immunotherapy
PUBLISHED: 11-29-2013
Show Abstract
Hide Abstract
Dario AA Vignali speaks to Katie Lockwood, Assistant Commissioning Editor Dario Vignali received his PhD in 1988 from the London School of Hygiene and Tropical Medicine, University of London, where he studied immunity to Schistosoma mansoni. He then held two postdoctoral positions from 1988 to 1993; first at the Institute for Immunology and Genetics, German Cancer Research Center (Heidelberg, Germany), with Gunter Hammerling, and then at the Department of Biochemistry and Molecular Biology, Harvard University (MA, USA), with Jack Strominger. He is currently Vice Chair and Member (Full Professor equivalent) of the Department of Immunology, St Jude Childrens Research Hospital (TN, USA), where he has been for 20 years. Dr Vignalis research focuses on molecular and cellular aspects of Treg function, immune regulation by inhibitory receptors and inhibitory cytokines (IL-35) in tumor immunity, mucosal immunity and Type 1 diabetes. He also studies proximal events in T-cell receptor-CD3 signaling.
Related JoVE Video
STAT heterodimers in immunity: A mixed message or a unique signal?
JAKSTAT
PUBLISHED: 09-24-2013
Show Abstract
Hide Abstract
Cytokine signals are essential for generating a robust and specialized immune response. These signals are typically transmitted via canonical STAT homodimers. However, the number of STAT molecules utilized by cytokine signaling cascades within immune cells are limited, and so the mechanism used to deliver complex signals remains elusive. Heterodimerization of STAT proteins is one potential mechanism for signals to be modified downstream of the receptor and may play an important role in dictating the targets of specific cytokine signaling. In this review, we discuss our current understanding of the prevalence of STAT heterodimers, how they are formed and what their physiologic role may be in vivo.
Related JoVE Video
Generation of T cell receptor-retrogenic mice: improved retroviral-mediated stem cell gene transfer.
Nat Protoc
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
The use of retrogenic mice offers a rapid and flexible approach to T cell receptor (TCR)-transgenic mice. By transducing bone marrow progenitor cells with a retrovirus that encodes a given TCR-?/? subunit, TCR-retrogenic mice can be generated in as few as 4-6 weeks, whereas conventional TCR transgenics can take 6 months or longer. In this updated protocol, we have increased the efficiency of the bone marrow transduction and bone marrow reconstitution compared with our previously published protocol. The main departure from the previous protocol is the implementation of spin transduction with the viral supernatant instead of coculture with the viral producer cell line. The changes in this protocol improve bone marrow viability, increase consistency of the bone marrow transduction and bone marrow engraftment, and they reduce the ratio of bone marrow donor mice to bone marrow recipients.
Related JoVE Video
Inhibitory role of the transcription repressor Gfi1 in the generation of thymus-derived regulatory T cells.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-05-2013
Show Abstract
Hide Abstract
Foxp3(+) regulatory T (T(reg)) cells are essential for the maintenance of self-tolerance and immune homeostasis. The majority of T(reg) cells is generated in the thymus as a specific subset of CD4(+) T cells, known as thymus-derived or natural T(reg) (nT(reg)) cells, in response to signals from T-cell receptors, costimulatory molecules, and cytokines. Recent studies have identified intracellular signaling and transcriptional pathways that link these signals to Foxp3 induction, but how the production of these extrinsic factors is controlled remains poorly understood. Here, we report that the transcription repressor growth factor independent 1 (Gfi1) has a key inhibitory role in the generation of nT(reg) cells by a noncell-autonomous mechanism. T cell-specific deletion of Gfi1 results in aberrant expansion of thymic nT(reg) cells and increased production of cytokines. In particular, IL-2 overproduction plays an important role in driving the expansion of nT(reg) cells. In contrast, although Gfi1 deficiency elevated thymocyte apoptosis, Gfi1 repressed nT(reg) generation independently of its prosurvival effect. Consistent with an inhibitory role of Gfi1 in this process, loss of Gfi1 dampens antitumor immunity. These data point to a previously unrecognized extrinsic control mechanism that negatively shapes thymic generation of nT(reg) cells.
Related JoVE Video
Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis.
Nature
PUBLISHED: 07-02-2013
Show Abstract
Hide Abstract
Regulatory T cells (Treg cells) have a crucial role in the immune system by preventing autoimmunity, limiting immunopathology, and maintaining immune homeostasis. However, they also represent a major barrier to effective anti-tumour immunity and sterilizing immunity to chronic viral infections. The transcription factor Foxp3 has a major role in the development and programming of Treg cells. The relative stability of Treg cells at inflammatory disease sites has been a highly contentious subject. There is considerable interest in identifying pathways that control the stability of Treg cells as many immune-mediated diseases are characterized by either exacerbated or limited Treg-cell function. Here we show that the immune-cell-expressed ligand semaphorin-4a (Sema4a) and the Treg-cell-expressed receptor neuropilin-1 (Nrp1) interact both in vitro, to potentiate Treg-cell function and survival, and in vivo, at inflammatory sites. Using mice with a Treg-cell-restricted deletion of Nrp1, we show that Nrp1 is dispensable for suppression of autoimmunity and maintenance of immune homeostasis, but is required by Treg cells to limit anti-tumour immune responses and to cure established inflammatory colitis. Sema4a ligation of Nrp1 restrained Akt phosphorylation cellularly and at the immunologic synapse by phosphatase and tensin homologue (PTEN), which increased nuclear localization of the transcription factor Foxo3a. The Nrp1-induced transcriptome promoted Treg-cell stability by enhancing quiescence and survival factors while inhibiting programs that promote differentiation. Importantly, this Nrp1-dependent molecular program is evident in intra-tumoral Treg cells. Our data support a model in which Treg-cell stability can be subverted in certain inflammatory sites, but is maintained by a Sema4a-Nrp1 axis, highlighting this pathway as a potential therapeutic target that could limit Treg-cell-mediated tumour-induced tolerance without inducing autoimmunity.
Related JoVE Video
The plasticity and stability of regulatory T cells.
Nat. Rev. Immunol.
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
Regulatory T (TReg) cells are crucial for the prevention of fatal autoimmunity in mice and humans. Forkhead box P3 (FOXP3)(+) TReg cells are produced in the thymus and are also generated from conventional CD4(+) T cells in peripheral sites. It has been suggested that FOXP3(+) TReg cells might become unstable under certain inflammatory conditions and might adopt a phenotype that is more characteristic of effector CD4(+) T cells. These suggestions have caused considerable debate in the field and have important implications for the therapeutic use of TReg cells. In this article, Nature Reviews Immunology asks several experts for their views on the plasticity and stability of TReg cells.
Related JoVE Video
Type 1 diabetes: translating mechanistic observations into effective clinical outcomes.
Nat. Rev. Immunol.
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Type 1 diabetes (T1D) remains an important health problem, particularly in western countries, where the incidence has been increasing in younger children. In 1986, Eisenbarth described T1D as a chronic autoimmune disease. Work over the past three-and-a-half decades has identified many of the genetic, immunological and environmental factors that are involved in the disease and have led to hypotheses concerning its pathogenesis. Clinical trials have been conducted to test these hypotheses but have had mixed results. Here, we discuss the findings that have led to our current concepts of the disease mechanisms involved in T1D and the clinical studies promoted by these studies. The findings from preclinical and clinical studies support the original proposed model for how T1D develops but have also suggested that this disease is more complex than was originally thought and will require broader treatment approaches.
Related JoVE Video
Distinct TCR signaling pathways drive proliferation and cytokine production in T cells.
Nat. Immunol.
PUBLISHED: 02-03-2013
Show Abstract
Hide Abstract
The physiological basis and mechanistic requirements for a large number of functional immunoreceptor tyrosine-based activation motifs (ITAMs; high ITAM multiplicity) in the complex of the T cell antigen receptor (TCR) and the invariant signaling protein CD3 remain obscure. Here we found that whereas a low multiplicity of TCR-CD3 ITAMs was sufficient to engage canonical TCR-induced signaling events that led to cytokine secretion, a high multiplicity of TCR-CD3 ITAMs was required for TCR-driven proliferation. This was dependent on the formation of compact immunological synapses, interaction of the adaptor Vav1 with phosphorylated CD3 ITAMs to mediate the recruitment and activation of the oncogenic transcription factor Notch1 and, ultimately, proliferation induced by the cell-cycle regulator c-Myc. Analogous mechanistic events were also needed to drive proliferation in response to weak peptide agonists. Thus, the TCR-driven pathways that initiate cytokine secretion and proliferation are separable and are coordinated by the multiplicity of phosphorylated ITAMs in TCR-CD3.
Related JoVE Video
Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape.
Cancer Res.
PUBLISHED: 12-20-2011
Show Abstract
Hide Abstract
Inhibitory receptors on immune cells are pivotal regulators of immune escape in cancer. Among these inhibitory receptors, CTLA-4 (targeted clinically by ipilimumab) serves as a dominant off-switch while other receptors such as PD-1 and LAG-3 seem to serve more subtle rheostat functions. However, the extent of synergy and cooperative interactions between inhibitory pathways in cancer remain largely unexplored. Here, we reveal extensive coexpression of PD-1 and LAG-3 on tumor-infiltrating CD4(+) and CD8(+) T cells in three distinct transplantable tumors. Dual anti-LAG-3/anti-PD-1 antibody treatment cured most mice of established tumors that were largely resistant to single antibody treatment. Despite minimal immunopathologic sequelae in PD-1 and LAG-3 single knockout mice, dual knockout mice abrogated self-tolerance with resultant autoimmune infiltrates in multiple organs, leading to eventual lethality. However, Lag3(-/-)Pdcd1(-/-) mice showed markedly increased survival from and clearance of multiple transplantable tumors. Together, these results define a strong synergy between the PD-1 and LAG-3 inhibitory pathways in tolerance to both self and tumor antigens. In addition, they argue strongly that dual blockade of these molecules represents a promising combinatorial strategy for cancer.
Related JoVE Video
The battle against immunopathology: infectious tolerance mediated by regulatory T cells.
Cell. Mol. Life Sci.
PUBLISHED: 11-03-2011
Show Abstract
Hide Abstract
Infectious tolerance is a process whereby one regulatory lymphoid population confers suppressive capacity on another. Diverse immune responses are induced following infection or inflammatory insult that can protect the host, or potentially cause damage if not properly controlled. Thus, the process of infectious tolerance may be critical in vivo for exerting effective immune control and maintaining immune homeostasis by generating specialized regulatory sub-populations with distinct mechanistic capabilities. Foxp3(+) regulatory T cells (T(regs)) are a central mediator of infectious tolerance through their ability to convert conventional T cells into induced regulatory T cells (iT(regs)) directly by secretion of the suppressive cytokines TGF-?, IL-10, or IL-35, or indirectly via dendritic cells. In this review, we will discuss the mechanisms and cell populations that mediate and contribute to infectious tolerance, with a focus on the intestinal environment, where tolerance induction to foreign material is critical.
Related JoVE Video
The plasticity of regulatory T cell function.
J. Immunol.
PUBLISHED: 10-17-2011
Show Abstract
Hide Abstract
Regulatory T cells (T(regs)) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. Whereas T(regs) possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any interrelationship or cross-regulatory mechanisms exist to orchestrate and control their utilization is unknown. In this study, we assessed the functional capacity of T(regs) lacking the ability to secrete both IL-10 and IL-35, which individually are required for maximal T(reg) activity. Surprisingly, IL-10/IL-35 double-deficient T(regs) were fully functional in vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (Ctse) expression, enhanced TRAIL (Tnfsf10) expression, and soluble TRAIL release, rendering IL-10/IL-35 double-deficient T(regs) functionally dependent on TRAIL in vitro and in vivo. Lastly, whereas C57BL/6 T(regs) are normally IL-10/IL-35 dependent, BALB/c T(regs), which express high levels of cathepsin E and enhanced TRAIL expression, are partially TRAIL dependent by default. These data reveal that cross-regulatory pathways exist that control the utilization of suppressive mechanisms, thereby providing T(reg) functional plasticity.
Related JoVE Video
Cutting edge: regulatory T cells do not mediate suppression via programmed cell death pathways.
J. Immunol.
PUBLISHED: 09-26-2011
Show Abstract
Hide Abstract
Regulatory T cells (Tregs) play a critical role in the immune system to regulate peripheral tolerance and prevent autoimmunity. However, the relative importance of different mechanisms of Treg function remains obscure. In this article, we reveal a limited role for programmed cell death pathways in mediating Treg suppression of conventional T cells. We show that Tregs are able to suppress the proliferation of conventional T cells that are resistant to apoptosis (Bim(-/-), Bim(-/-)Puma(-/-), Bcl-2 transgenic) or receptor-interacting serine-threonine kinase-dependent necrosis (also referred to as regulated necrosis or necroptosis) (Ripk3(-/-)) in several in vitro and in vivo assays. These data suggest that programmed cell death pathways, such as apoptosis and receptor-interacting serine-threonine kinase-dependent necrosis, are not required for Treg-mediated suppression.
Related JoVE Video
Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3.
J. Immunol.
PUBLISHED: 08-26-2011
Show Abstract
Hide Abstract
Lymphocyte activation gene-3 (LAG-3; CD223) is a CD4 homolog that is required for maximal regulatory T cell function and for the control of CD4(+) and CD8(+) T cell homeostasis. Lag3(-)(/)(-) NOD mice developed substantially accelerated diabetes with 100% incidence. Adoptive transfer experiments revealed that LAG-3 was primarily responsible for limiting the pathogenic potential of CD4(+) T cells and, to a lesser extent, CD8(+) T cells. Lag3(-)(/)(-) mice exhibited accelerated, invasive insulitis, corresponding to increased CD4(+) and CD8(+) T cell islet infiltration and intraislet proliferation. The frequencies of islet Ag-reactive chromogranin A-specific CD4(+) T cells and islet specific glucose-6-phosphatase-specific CD8(+) T cells were significantly increased in the islets of Lag3(-)(/)(-) mice, suggesting an early expansion of pathogenic clones that is normally restrained by LAG-3. We conclude that LAG-3 is necessary for regulating CD4(+) and CD8(+) T cell function during autoimmune diabetes, and thus may contribute to limiting autoimmunity in disease-prone environments.
Related JoVE Video
T cell-driven initiation and propagation of autoimmune diabetes.
Curr. Opin. Immunol.
PUBLISHED: 08-20-2011
Show Abstract
Hide Abstract
The destruction of beta cells in type 1 diabetes in humans and in autoimmune diabetes in the NOD mouse model is a consequence of chronic islet inflammation in the pancreas. The T cell-driven autoimmune response is initiated by environmental triggers which are influenced by the state of intestinal homeostasis and the microbiota. The disease process can be separated into two phases: firstly, initiation of mild, controlled, long-term infiltration and secondly, propagation of invasive inflammation which quickly progresses to beta cell deletion and autoimmune diabetes. In this review, we will discuss the cellular and molecular triggers that might be required for these two phases in the context of other issues including the unique anatomical location of pancreas, the location of T cell priming, the requirements for islet entry, and the events that ultimately drive beta cell destruction and the onset of diabetes.
Related JoVE Video
Interpreting mixed signals: the cells cytokine conundrum.
Curr. Opin. Immunol.
PUBLISHED: 06-22-2011
Show Abstract
Hide Abstract
Cytokines are essential for the activation, differentiation and control of the immune system. Many cytokines, alone or in combination with other cytokines, have multiple functions and can often act on many different cell types with distinct developmental or functional consequences. Despite the myriad of cytokines and cytokine receptors, there are relatively few signaling molecules that transduce these diverse cytokine signals. In this review, we will discuss the potential mechanisms used by cytokines to mediate distinct cellular outcomes from a small number of signaling molecules. Understanding this paradigm in cytokine signaling can aid in the development of potential therapeutic approaches involving cytokine targeting or use.
Related JoVE Video
Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-23-2011
Show Abstract
Hide Abstract
Pathogen-specific responses are characterized by preferred profiles of peptide+class I MHC (pMHCI) glycoprotein-specific T-cell receptor (TCR) Variable (V)-region use. How TCRV-region bias impacts TCR?? heterodimer selection and resultant diversity is unclear. The D(b)PA(224)-specific TCR repertoire in influenza A virus-infected C57BL/6J (B6) mice exhibits a preferred TCRV-region bias toward the TRBV29 gene segment and an optimal complementarity determining region (CDR3) ?-length of 6 aa. Despite these restrictions, D(b)PA(224)-specific BV29(+) T cells use a wide array of unique CDR3? sequences. Structural characterization of a single, TRBV29(+)D(b)P(A224)-specific TCR??-pMHCI complex demonstrated that CDR3? amino acid side chains made specific peptide interactions, but the CDR3? main chain exclusively contacted peptides. Thus, length but not amino acid sequence was key for recognition and flexibility in V?-region use. In support of this hypothesis, retrovirus expression of the D(b)PA(224)-specific TCRV?-chain was used to constrain pairing within a naive/immune epitope-specific repertoire. The retrogenic TCRV? paired with a diversity of CDR3?s in the context of a preferred TCRV? spectrum. Overall, these data provide an explanation for the combination of TCRV region bias and diversity within selected repertoires, even as they maintain exquisite pMHCI specificity.
Related JoVE Video
Cutting edge: Human regulatory T cells require IL-35 to mediate suppression and infectious tolerance.
J. Immunol.
PUBLISHED: 05-16-2011
Show Abstract
Hide Abstract
Human regulatory T cells (T(reg)) are essential for the maintenance of immune tolerance. However, the mechanisms they use to mediate suppression remain controversial. Although IL-35 has been shown to play an important role in T(reg)-mediated suppression in mice, recent studies have questioned its relevance in human T(reg). In this study, we show that human T(reg) express and require IL-35 for maximal suppressive capacity. Substantial upregulation of EBI3 and IL12A, but not IL10 and TGFB, was observed in activated human T(reg) compared with conventional T cells (T(conv)). Contact-independent T(reg)-mediated suppression was IL-35 dependent and did not require IL-10 or TGF-?. Lastly, human T(reg)-mediated suppression led to the conversion of the suppressed T(conv) into iTr35 cells, an IL-35-induced T(reg) population, in an IL-35-dependent manner. Thus, IL-35 contributes to human T(reg)-mediated suppression, and its conversion of suppressed target T(conv) into IL-35-induced T(reg) may contribute to infectious tolerance.
Related JoVE Video
Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily.
Immunol. Res.
PUBLISHED: 05-10-2011
Show Abstract
Hide Abstract
Production of cytokines by immune cells in response to stimuli and the binding of cytokines to specific receptors on target cells is a central feature of the immune response. The IL-12 cytokine family is particularly influential in determining the fate of T cells and is characterized by the sharing of cytokine and receptor subunits. A thorough understanding of the molecular interactions within this family will be a key to the development of therapeutic inhibitors or enhancers of IL-12 family function. While the current structural and molecular data for IL-12 family members is limited, there is ample information on the structurally related IL-6 cytokine family. This review will summarize the current structural and mutagenesis data within the IL-12 family and will attempt to utilize similarities between the IL-6 and IL-12 families to understand molecular interactions between IL-12 family subunits and with receptor components.
Related JoVE Video
LAG-3, TGF-?, and cell-intrinsic PD-1 inhibitory pathways contribute to CD8 but not CD4 T-cell tolerance induced by allogeneic BMT with anti-CD40L.
Blood
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Administration of a single dose of anti-CD40L mAb at the time of allogeneic BM transplantation tolerizes peripheral alloreactive T cells and permits establishment of mixed hematopoietic chimerism in mice. Once engrafted, mixed chimeras are systemically tolerant to donor Ags through a central deletion mechanism and will accept any donor organ indefinitely. We previously found that the PD-1/PD-L1 pathway is required for CD8 T-cell tolerance in this model. However, the cell population that must express PD-1 and the role of other inhibitory molecules were unknown. Here, we report that LAG-3 is required for long-term peripheral CD8 but not CD4 T-cell tolerance and that this requirement is CD8 cell-extrinsic. In contrast, adoptive transfer studies revealed a CD8 T cell-intrinsic requirement for CTLA4/B7.1/B7.2 and for PD-1 for CD8 T-cell tolerance induction. We also observed that both PD-L1 and PD-L2 are independently required on donor cells to achieve T-cell tolerance. Finally, we uncovered a requirement for TGF-? signaling into T cells to achieve peripheral CD8 but not CD4 T-cell tolerance in this in vivo system.
Related JoVE Video
Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice.
J. Clin. Invest.
PUBLISHED: 02-23-2011
Show Abstract
Hide Abstract
Type 1 diabetes is a chronic autoimmune disease in which genetic predispositions affect the immune system, leading to a loss of T cell tolerance to ? cells and consequent T cell-mediated destruction of insulin-producing islet cells. Genetic studies have suggested that PRSS16 is linked to a diabetes susceptibility locus of the extended HLA class I region in humans. PRSS16 encodes what we believe to be a novel protease, thymus-specific serine protease (TSSP), which shows predominant expression in thymic epithelial cells and is suspected to have a restricted role in the class II presentation pathway. Consistently, Tssp is necessary for the intrathymic selection of few class II-restricted T cell receptor specificities in B6 mice. To directly assess the role of Tssp in autoimmune diabetes, we generated Tssp-deficient (Tssp°) NOD mice. While remaining immunocompetent, Tssp° NOD mice were protected from diabetes and severe insulitis. Diabetes resistance of Tssp° NOD mice was a property of the CD4 T cell compartment that is acquired during thymic selection and correlated with an impaired selection of CD4 T cells specific for islet antigens. Hence, in the NOD mouse, Tssp is a critical regulator of diabetes development through the selection of the autoreactive CD4 T cell repertoire.
Related JoVE Video
In vivo Treg suppression assays.
Methods Mol. Biol.
PUBLISHED: 02-03-2011
Show Abstract
Hide Abstract
To fully examine the functionality of a regulatory T cell (T(reg)) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of T(regs) upon different target cell types. The advantages and disadvantages of each model including resources, time, and technical expertise required to execute each model are also described.
Related JoVE Video
In vitro Treg suppression assays.
Methods Mol. Biol.
PUBLISHED: 02-03-2011
Show Abstract
Hide Abstract
Determining the activity of a regulatory T-cell population in vitro is often the first step in analyzing its function. To obtain reliable and reproducible results, it is critical to follow the protocol that is most applicable to your experimental question. We have outlined below a basic in vitro suppression assay as well as a variety of alternative/additional protocols that can be utilized alone or in combination as desired.
Related JoVE Video
PD-L1 blockade effectively restores strong graft-versus-leukemia effects without graft-versus-host disease after delayed adoptive transfer of T-cell receptor gene-engineered allogeneic CD8+ T cells.
Blood
PUBLISHED: 11-09-2010
Show Abstract
Hide Abstract
Adoptive transfer (AT) of T cells forced to express tumor-reactive T-cell receptor (TCR) genes is an attractive strategy to direct autologous T-cell immunity against tumor-associated antigens. However, clinical effectiveness has been hampered by limited in vivo persistence. We investigated whether the use of major histocompatibility complex-mismatched T cells would prolong the in vivo persistence of tumor-reactive TCR gene expressing T cells by continuous antigen-driven proliferation via the endogenous potentially alloreactive receptor. Donor-derived CD8(+) T cells engineered to express a TCR against a leukemia-associated antigen mediated strong graft-versus-leukemia (GVL) effects with reduced graft-versus-host disease (GVHD) severity when given early after transplantation. AT later after transplantation resulted in a complete loss of GVL. Loss of function was associated with reduced expansion of TCR-transduced T cells as assessed by CDR3 spectratyping analysis and PD-1 up-regulation on T cells in leukemia-bearing recipients. PD-L1 blockade in allogeneic transplant recipients largely restored the GVL efficacy without triggering GVHD, whereas no significant antileukemia effects of PD-L1 blockade were observed in syngeneic controls. These data suggest a clinical approach in which the AT of gene-modified allogeneic T cells early after transplantation can provide a potent GVL effect without GVHD, whereas later AT is effective only with concurrent PD-L1 blockade.
Related JoVE Video
IL-35-mediated induction of a potent regulatory T cell population.
Nat. Immunol.
PUBLISHED: 09-02-2010
Show Abstract
Hide Abstract
Regulatory T cells (T(reg) cells) have a critical role in the maintenance of immunological self-tolerance. Here we show that treatment of naive human or mouse T cells with IL-35 induced a regulatory population, which we call iT(R)35 cells, that mediated suppression via IL-35 but not via the inhibitory cytokines IL-10 or transforming growth factor-? (TGF-?). We found that iT(R)35 cells did not express or require the transcription factor Foxp3, and were strongly suppressive and stable in vivo. T(reg) cells induced the generation of iT(R)35 cells in an IL-35- and IL-10-dependent manner in vitro and induced their generation in vivo under inflammatory conditions in intestines infected with Trichuris muris and within the tumor microenvironment (B16 melanoma and MC38 colorectal adenocarcinoma), where they contributed to the regulatory milieu. Thus, iT(R)35 cells constitute a key mediator of infectious tolerance and contribute to T(reg) cell-mediated tumor progression. Furthermore, iT(R)35 cells generated ex vivo might have therapeutic utility.
Related JoVE Video
Mutational analysis of TRAF6 reveals a conserved functional role of the RING dimerization interface and a potentially necessary but insufficient role of RING-dependent TRAF6 polyubiquitination towards NF-?B activation.
Cell. Signal.
PUBLISHED: 07-27-2010
Show Abstract
Hide Abstract
TRAF6 is an E3 ubiquitin ligase that plays a pivotal role in the activation of NF-?B by innate and adaptive immunity stimuli. TRAF6 consists of a highly conserved carboxyl terminal TRAF-C domain which is preceded by a coiled coil domain and an amino terminal region that contains a RING domain and a series of putative zinc-finger motifs. The TRAF-C domain contributes to TRAF6 oligomerization and mediates the interaction of TRAF6 with upstream signaling molecules whereas the RING domain comprises the core of the ubiquitin ligase catalytic domain. In order to identify structural elements that are important for TRAF6-induced NF-?B activation, mutational analysis of the TRAF-C and RING domains was performed. Alterations of highly conserved residues of the TRAF-C domain of TRAF6 did not affect significantly the ability of the protein to activate NF-?B. On the other hand a number of functionally important residues (L77, Q82, R88, F118, N121 and E126) for the activation of NF-?B were identified within the RING domain of TRAF6. Interestingly, several homologues of these residues in TRAF2 were shown to have a conserved functional role in TRAF2-induced NF-?B activation and lie at the dimerization interface of the RING domain. Finally, whereas alteration of Q82, R88 and F118 compromised both the K63-linked polyubiquitination of TRAF6 and its ability to activate NF-?B, alteration of L77, N121 and E126 diminished the NF-?B activating function of TRAF6 without affecting TRAF6 K63-linked polyubiquitination. Our results support a conserved functional role of the TRAF RING domain dimerization interface and a potentially necessary but insufficient role for RING-dependent TRAF6 K63-linked polyubiquitination towards NF-?B activation in cells.
Related JoVE Video
Differential subcellular localization of the regulatory T-cell protein LAG-3 and the coreceptor CD4.
Eur. J. Immunol.
PUBLISHED: 04-15-2010
Show Abstract
Hide Abstract
CD4 binds to MHC class II molecules and enhances T-cell activation. The CD4-related transmembrane protein LAG-3 (lymphocyte activation gene-3, CD223) binds to the same ligand but inhibits T-cell proliferation. We have previously shown that LAG-3 cell surface expression is tightly regulated by extracellular cleavage in order to regulate its potent inhibitory activity. Given this observation and the contrasting functions of CD4 and LAG-3, we investigated the cell distribution, location and transport of these related cell surface molecules. As expected, the vast majority of CD4 is expressed at the cell surface with minimal intracellular localization, as determined by flow cytometry, immunoblotting and confocal microscopy. In contrast, nearly half the cellular content of LAG-3 is retained in intracellular compartments. This significant intracellular storage of LAG-3 appears to facilitate its rapid translocation to the cell surface following T-cell activation, which was much faster for LAG-3 than CD4. Increased vesicular pH inhibited translocation of both CD4 and LAG-3 to the plasma membrane. While some colocalization of the microtubule organizing center, early/recycling endosomes and secretory lysosomes was observed with CD4, significantly greater colocalization was observed with LAG-3. Analysis of CD4:LAG-3 chimeras suggested that multiple domains may contribute to intracellular retention of LAG-3. Thus, in contrast with CD4, the substantial intracellular storage of LAG-3 and its close association with the microtubule organizing center and recycling endosomes may facilitate its rapid translocation to the cell surface during T-cell activation and help to mitigate T-cell activation.
Related JoVE Video
Central nervous system destruction mediated by glutamic acid decarboxylase-specific CD4+ T cells.
J. Immunol.
PUBLISHED: 03-26-2010
Show Abstract
Hide Abstract
High titers of autoantibodies against glutamic acid decarboxylase (GAD) 65 are commonly observed in patients suffering from type 1 diabetes as well as stiff-person syndrome (SPS), a disorder that affects the CNS, and a variant of SPS, progressive encephalomyelitis with rigidity and myoclonus. Although there is a considerable amount of data focusing on the role of GAD65-specific CD4(+) T cells in type 1 diabetes, little is known about their role in SPS. In this study, we show that mice possessing a monoclonal GAD65-specific CD4(+) T cell population (4B5, PA19.9G11, or PA17.9G7) develop a lethal encephalomyelitis-like disease in the absence of any other T cells or B cells. GAD65-reactive CD4(+) T cells were found throughout the CNS in direct concordance with GAD65 expression and activated microglia: proximal to the circumventricular organs at the interface between the brain parenchyma and the blood-brain barrier. In the presence of B cells, high titer anti-GAD65 autoantibodies were generated, but these had no effect on the incidence or severity of disease. In addition, GAD65-specific CD4(+) T cells isolated from the brain were activated and produced IFN-gamma. These findings suggest that GAD65-reactive CD4(+) T cells alone mediate a lethal encephalomyelitis-like disease that may serve as a useful model to study GAD65-mediated diseases of the CNS.
Related JoVE Video
Development of thymically derived natural regulatory T cells.
Ann. N. Y. Acad. Sci.
PUBLISHED: 02-12-2010
Show Abstract
Hide Abstract
Natural regulatory T cells (nTregs) are defined by their inherent ability to establish and maintain peripheral self-tolerance. In recent years, the development of nTregs has come under close examination with the advent of Forkhead Box P3 protein (FOXP3)-green fluorescent protein reporter mice that pinpointed the initiation of FOXP3 expression within the thymus. The mechanism and pathway of nTreg development has only recently been studied in detail and to a large degree remains unclear. In this review, we will discuss our current understanding of nTreg lineage choice and development from a cellular and intracellular standpoint.
Related JoVE Video
Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development.
EMBO J.
PUBLISHED: 01-15-2010
Show Abstract
Hide Abstract
Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.
Related JoVE Video
Organization of proximal signal initiation at the TCR:CD3 complex.
Immunol. Rev.
PUBLISHED: 11-14-2009
Show Abstract
Hide Abstract
The series of events leading to T-cell activation following antigen recognition has been extensively investigated. Although the exact mechanisms of ligand binding and transmission of this extracellular interaction into a productive intracellular signaling sequence remains incomplete, it has been known for many years that the immunoreceptor tyrosine activation motifs (ITAMs) of the T-cell receptor (TCR):CD3 complex are required for initiation of this signaling cascade because of the recruitment and activation of multiple protein tyrosine kinases, signaling intermediates, and adapter molecules. It however remains unclear why the TCR:CD3 complex requires 10 ITAMs, while many other ITAM-containing immune receptors, such as Fc receptors (FcRs) and the B cell receptor (BCR), contain far fewer ITAMs. We have recently demonstrated that various parameters of T cell development and activation are influenced by the number, as well as location and type, of ITAMs within the TCR:CD3 complex and hence propose that the TCR is capable of scalable signaling that facilitates the initiation and orchestration of diverse T-cell functions. While many of the underlying mechanisms remain hypothetical, this review intends to amalgamate what we have learned from conventional biochemical analyses regarding initiation and diversification of T-cell signaling, with more recent evidence from molecular and fluorescent microscopic analyses, to propose a broader purpose for the TCR:CD3 ITAMs. Rather than simply signal initiation, individual ITAMs may also be responsible for the differential recruitment of signaling and regulatory molecules which ultimately affects T-cell development, activation and differentiation.
Related JoVE Video
Regulatory T cells and inhibitory cytokines in autoimmunity.
Curr. Opin. Immunol.
PUBLISHED: 08-13-2009
Show Abstract
Hide Abstract
Foxp3(+) regulatory T cells (T(regs)) contribute significantly to the maintenance of peripheral tolerance, but they ultimately fail in autoimmune diseases. The events that lead to T(reg) failure in controlling autoreactive effector T cells (T(effs)) during autoimmunity are not completely understood. In this review, we discuss possible mechanisms for this subversion as they relate to type 1 diabetes (T1D) and multiple sclerosis (MS). Recent studies emphasize firstly, the role of inflammatory cytokines, such as IL-6, in inhibiting or subverting T(reg) function; secondly, the issue of T(reg) plasticity; thirdly, the possible resistance of autoimmune T cells to T(reg)-mediated control; and fourthly, T(reg)-associated inhibitory cytokines TGFbeta, IL-10 and IL-35 in facilitating T(reg) suppressive activity and promoting T(reg) generation. These recent advances place a large emphasis on the local tissue specific inflammatory environment as it relates to T(reg) function and disease development.
Related JoVE Video
Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines.
Nat. Immunol.
PUBLISHED: 07-15-2009
Show Abstract
Hide Abstract
Balanced production of type I interferons and proinflammatory cytokines after engagement of Toll-like receptors (TLRs), which signal through adaptors containing a Toll-interleukin 1 receptor (TIR) domain, such as MyD88 and TRIF, has been proposed to control the pathogenesis of autoimmune disease and tumor responses to inflammation. Here we show that TRAF3, a ubiquitin ligase that interacts with both MyD88 and TRIF, regulated the production of interferon and proinflammatory cytokines in different ways. Degradative ubiquitination of TRAF3 during MyD88-dependent TLR signaling was essential for the activation of mitogen-activated protein kinases (MAPKs) and production of inflammatory cytokines. In contrast, TRIF-dependent signaling triggered noncanonical TRAF3 self-ubiquitination that activated the interferon response. Inhibition of degradative ubiquitination of TRAF3 prevented the expression of all proinflammatory cytokines without affecting the interferon response.
Related JoVE Video
T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event.
Immunity
PUBLISHED: 06-04-2009
Show Abstract
Hide Abstract
Type 1 diabetes is a T cell-mediated autoimmune disease, characterized by lymphocytic infiltration of the pancreatic islets. It is currently thought that islet antigen specificity is not a requirement for islet entry and that diabetogenic T cells can recruit a heterogeneous bystander T cell population. We tested this assumption directly by generating T cell receptor (TCR) retrogenic mice expressing two different T cell populations. By combining diabetogenic and nondiabetogenic or nonautoantigen-specific T cells, we demonstrate that bystander T cells cannot accumulate in the pancreatic islets. Autoantigen-specific T cells that accumulate in islets, but do not cause diabetes, were also unaffected by the presence of diabetogenic T cells. Additionally, 67% of TCRs cloned from nonobese diabetic (NOD) islet-infiltrating CD4(+) T cells were able to mediate cell-autonomous islet infiltration and/or diabetes when expressed in retrogenic mice. Therefore, islet entry and accumulation appears to be a cell-autonomous and tightly regulated event and is governed by islet antigen specificity.
Related JoVE Video
Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells.
J. Immunol.
PUBLISHED: 05-21-2009
Show Abstract
Hide Abstract
Lymphocyte Activation Gene-3 (LAG-3) is a transmembrane protein that binds MHC class II, enhances regulatory T cell activity, and negatively regulates cellular proliferation, activation, and homeostasis of T cells. Programmed Death 1 (PD-1) also negatively regulates T cell function. LAG-3 and PD-1 are both transiently expressed on CD8 T cells that have been stimulated during acute activation. However, both LAG-3 and PD-1 remain on CD8 T cells at high levels after stimulation within tolerizing environments. Our previous data demonstrated that blockade of either LAG-3 or PD-1 using mAb therapy in combination with vaccination restores the function of tolerized Ag-specific CD8 T cells in models of self and tumor tolerance. It is unclear whether tolerized CD8 T cells coexpress PD-1 and LAG-3 or whether PD-1 and LAG-3 mark functionally distinct populations of CD8 T cells. In this study, we describe three populations of CD8 T cells activated under tolerizing conditions based on LAG-3 and PD-1 staining, each with distinct phenotypic and functional characteristics. From a mechanistic perspective, both Ag concentration and proinflammatory signals control the expression of LAG-3 and PD-1 phenotypes on CD8 T cells under activating and tolerizing conditions. These results imply that signaling through the PD-1 and LAG-3 pathways have distinct functional consequences to CD8 T cells under tolerizing conditions and manipulation of both Ag and cytokine signaling can influence CD8 tolerance through LAG-3 and PD-1.
Related JoVE Video
Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner.
J. Immunol.
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
Regulatory T cells (T(reg)) are believed to suppress conventional T cell (T(conv)) proliferation in vitro in a contact-dependent, cytokine-independent manner, based in part on experiments in which T(reg) and T(conv) are separated by a permeable membrane. We show that the production of IL-35, a novel inhibitory cytokine expressed by natural T(reg), increases substantially following contact with T(conv). Surprisingly, T(reg) were able to mediate potent suppression of T(conv) across a permeable membrane when placed in direct contact with T(conv) in the upper chamber of a Transwell plate. Suppression was IL-35 and IL-10 dependent, and T(conv) activation was required for maximal potentiation of T(reg) suppression. These data suggest that it is the induction of suppression, rather than the function of T(reg) that is obligatorily contact dependent.
Related JoVE Video
Cutting edge: regulatory T cells do not require stimulation through their TCR to suppress.
J. Immunol.
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
The mechanism and stimulatory requirements of regulatory T cell (Treg)-mediated suppression are still unclear. To assess the requirement for Treg stimulation by cognate peptide:MHC, we used T cells from OTII and AND TCR transgenic mice that are specific for and restricted by distinct, noncrossreactive peptide:MHC combinations. This allowed us to independently activate Tregs and their conventional T cell (Tconv) targets. Surprisingly, we found that suppression can occur in the absence of peptide:MHC-mediated stimulation of Tregs. This suppression was Treg dependent and not due to cold target inhibition. Using Rag1(-/-) TCR transgenic T cells, we show that regulation of Tconv proliferation by heterogeneous Tregs is not due to alloreactivity or crossreactivity. Finally, using anti-TCR-Vbeta8-coated microbeads and Vbeta8(-) Tregs, we show that TCR stimulation-independent suppression can occur in the absence of APCs. These data suggest that Tregs may possess constitutive regulatory activity that can be mediated in the absence of cognate peptide:MHC-TCR stimulation.
Related JoVE Video
LAG-3 regulates plasmacytoid dendritic cell homeostasis.
J. Immunol.
PUBLISHED: 02-10-2009
Show Abstract
Hide Abstract
Lymphocyte activation gene 3 (LAG-3) is a CD4-related, activation-induced cell surface molecule expressed by various lymphoid cell types and binds to MHC class II with high affinity. We have previously shown that LAG-3 negatively regulates the expansion of activated T cells and T cell homeostasis, and is required for maximal regulatory T cell function. In this study, we demonstrate for the first time that LAG-3 is also expressed on CD11c(low)/B220(+)/PDCA-1(+) plasmacytoid dendritic cells (pDCs). Lag3 expression, as determined by real time PCR, was approximately 10-fold greater in pDCs than in either regulatory T cells or activated T effector cells. Activated pDCs also generate approximately 5 times more sLAG-3 than activated T cells. LAG-3-deficient pDCs proliferate and expand more than wild-type pDCs in vivo in response to the TLR9 ligand, CpG. However, the effect of LAG-3 appears to be selective as there was no effect of LAG-3 on the expression of MHC class II, TLR9, and chemokine receptors, or on cytokine production. Lastly, adoptive transfer of either Lag3(+/+) or Lag3(-/-) T cells plus or minus Lag3(+/+) or Lag3(-/-) pDCs defined a role for LAG-3 in controlling pDC homeostasis as well as highlighting the consequences of deregulated Lag3(-/-) pDCs on T cell homeostasis. This raised the possibility of homeostatic reciprocity between T cells and pDCs. Collectively, our data suggests that LAG-3 plays an important but selective cell intrinsic and cell extrinsic role in pDC biology, and may serve as a key functional marker for their study.
Related JoVE Video
Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection.
Nat. Immunol.
PUBLISHED: 01-31-2009
Show Abstract
Hide Abstract
T cell exhaustion often occurs during chronic infection and prevents optimal viral control. The molecular pathways involved in T cell exhaustion remain poorly understood. Here we show that exhausted CD8+ T cells are subject to complex layers of negative regulation resulting from the coexpression of multiple inhibitory receptors. Exhausted CD8+ T cells expressed up to seven inhibitory receptors. Coexpression of multiple distinct inhibitory receptors was associated with greater T cell exhaustion and more severe infection. Regulation of T cell exhaustion by various inhibitory pathways was nonredundant, as blockade of the T cell inhibitory receptors PD-1 and LAG-3 simultaneously and synergistically improved T cell responses and diminished viral load in vivo. Thus, CD8+ T cell responses during chronic viral infections are regulated by complex patterns of coexpressed inhibitory receptors.
Related JoVE Video
The development and function of regulatory T cells.
Cell. Mol. Life Sci.
PUBLISHED: 01-23-2009
Show Abstract
Hide Abstract
Regulatory T cells (Tregs) are a critical subset of T cells that mediate peripheral tolerance. There are two types of Tregs: natural Tregs, which develop in the thymus, and induced Tregs, which are derived from naive CD4(+) T cells in the periphery. Tregs utilize a variety of mechanisms to suppress the immune response. While Tregs are critical for the peripheral maintenance of potential autoreactive T cells, they can also be detrimental by preventing effective anti-tumor responses and sterilizing immunity against pathogens. In this review, we will discuss the development of natural and induced Tregs as well as the role of Tregs in a variety of disease settings and the mechanisms they utilize for suppression.
Related JoVE Video
Combinatorial Immunotherapy: PD-1 may not be LAG-ing behind any more.
Oncoimmunology
Show Abstract
Hide Abstract
Cancer immunotherapy attempts to harness the immune system by breaking tolerance and generating a robust anticancer response. We have recently demonstrated a synergistic enhancement in tumor clearance following therapeutic, dual PD-1 and LAG-3 blockade. Here, we discuss the implications of these findings in the context of future combinatorial immunotherapeutic approaches.
Related JoVE Video
Identity crisis: its not just Foxp3 anymore.
Immunity
Show Abstract
Hide Abstract
What does it take to make a regulatory T (Treg) cell? In this issue of Immunity, Ohkura et al. show that Treg-cell-specific CpG hypomethylation and Foxp3 expression are independent events required for Treg cell development, stability, and full suppressive activity.
Related JoVE Video
Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade.
J. Immunol.
Show Abstract
Hide Abstract
Regulatory T cells play important roles in cancer development and progression by limiting the generation of innate and adaptive anti-tumor immunity. We hypothesized that in addition to natural CD4(+)CD25(+) regulatory T cells (Tregs) and myeloid-derived suppressor cells, tumor Ag-specific Tregs interfere with the detection of anti-tumor immunity after immunotherapy. Using samples from prostate cancer patients immunized with a DNA vaccine encoding prostatic acid phosphatase (PAP) and a trans-vivo delayed-type hypersensitivity (tvDTH) assay, we found that the detection of PAP-specific effector responses after immunization was prevented by the activity of PAP-specific regulatory cells. These regulatory cells were CD8(+)CTLA-4(+), and their suppression was relieved by blockade of CTLA-4, but not IL-10 or TGF-?. Moreover, Ag-specific CD8(+) Tregs were detected prior to immunization in the absence of PAP-specific effector responses. These PAP-specific CD8(+)CTLA-4(+) suppressor T cells expressed IL-35, which was decreased after blockade of CTLA-4, and inhibition of either CTLA-4 or IL-35 reversed PAP-specific suppression of tvDTH response. PAP-specific CD8(+)CTLA-4(+) T cells also suppressed T cell proliferation in an IL-35-dependent, contact-independent fashion. Taken together, these findings suggest a novel population of CD8(+)CTLA-4(+) IL-35-secreting tumor Ag-specific Tregs arise spontaneously in some prostate cancer patients, persist during immunization, and can prevent the detection of Ag-specific effector responses by an IL-35-dependent mechanism.
Related JoVE Video
IL-12 family cytokines: immunological playmakers.
Nat. Immunol.
Show Abstract
Hide Abstract
The interleukin 12 (IL-12) family is unique in having the only heterodimeric cytokines, including IL-12, IL-23, IL-27 and IL-35. This feature endows these cytokines with a unique set of connections and functional interactions not shared by other cytokine families. Despite sharing many structural features and molecular partners, cytokines of the IL-12 family mediate surprisingly diverse functional effects. Here we discuss the unique and unusual structural and functional characteristics of this cytokine family. We outline how cells might interpret seemingly similar cytokine signals to give rise to the diverse functional outcomes that characterize this cytokine family. We also discuss the therapeutic implications of this complexity.
Related JoVE Video
Unexpected role for MHC II-peptide complexes in shaping CD8 T-cell expansion and differentiation in vivo.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Here we report a unique role for MHC II-peptide complexes in controlling immune responses of naïve CD8 T cells. Compared with CD8 T cells from WT mice, CD8 T cells isolated from MHC II(-/-) mice hyperproliferated under lymphopenic conditions, differentiated into effector cells producing proinflammatory cytokines, and mediated more severe tissue inflammation. The elevated responses of MHC II(-/-) CD8 T cells were due to the absence of MHC II, but not CD4, T cells. The hyperreactivity appeared to be a feature of mature T cells, given its absence in CD8 single positive thymocytes derived from MHC II(-/-) mice. Expression of the MHC II ligand LAG3 was markedly enhanced during in vivo activation of MHC II(-/-) CD8 T cells, and blockade of MHC II-LAG3 interactions further enhanced T-cell expansion. Importantly, CD8 T cells isolated from H-2M(-/-) mice expressing WT levels of MHC II also displayed hyperresponsiveness similar to that of MHC II(-/-) CD8 T cells, suggesting that peptides presented on MHC II are involved in the control of CD8 T-cell responses. Our results uncover a previously undefined MHC II-dependent regulation that tunes CD8 T-cell reactivity and may have implications for an improved understanding of CD8 T-cell homeostasis and functions.
Related JoVE Video
Modulation of redox balance leaves murine diabetogenic TH1 T cells "LAG-3-ing" behind.
Diabetes
Show Abstract
Hide Abstract
Preventing activation of diabetogenic T cells is critical for delaying type 1 diabetes onset. The inhibitory molecule lymphocyte activation gene 3 (LAG-3) and metalloprotease tumor necrosis factor-? converting enzyme (TACE) work together to regulate TH1 responses. The aim of this study was to determine if regulating redox using a catalytic antioxidant (CA) could modulate TACE-mediated LAG-3 shedding to impede diabetogenic T-cell activation and progression to disease. A combination of in vitro experiments and in vivo analyses using NOD mouse strains was conducted to test the effect of redox modulation on LAG-3 shedding, TACE enzymatic function, and disease onset. Systemic treatment of NOD mice significantly delayed type 1 diabetes onset. Disease prevention correlated with decreased activation, proliferation, and effector function of diabetogenic T cells; reduced insulin-specific T-cell frequency; and enhanced LAG-3(+) cells. Redox modulation also affected TACE activation, diminishing LAG-3 cleavage. Furthermore, disease progression was monitored by measuring serum soluble LAG-3, which decreased in CA-treated mice. Therefore, affecting redox balance by CA treatment reduces the activation of diabetogenic T cells and impedes type 1 diabetes onset via decreasing T-cell effector function and LAG-3 cleavage. Moreover, soluble LAG-3 can serve as an early T-cell-specific biomarker for type 1 diabetes onset and immunomodulation.
Related JoVE Video
Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency.
Immunity
Show Abstract
Hide Abstract
Regulatory T (Treg) cells, driven by the Foxp3 transcription factor, are responsible for limiting autoimmunity and chronic inflammation. We showed that a well-characterized Foxp3(gfp) reporter mouse, which expresses an N-terminal GFP-Foxp3 fusion protein, is a hypomorph that causes profoundly accelerated autoimmune diabetes on a NOD background. Although natural Treg cell development and in vitro function are not markedly altered in Foxp3(gfp) NOD and C57BL/6 mice, Treg cell function in inflammatory environments was perturbed and TGF-?-induced Treg cell development was reduced. Foxp3(gfp) was unable to interact with the histone acetyltransferase Tip60, the histone deacetylase HDAC7, and the Ikaros family zinc finger 4, Eos, which led to reduced Foxp3 acetylation and enhanced K48-linked polyubiquitylation. Collectively this results in an altered transcriptional landscape and reduced Foxp3-mediated gene repression, notably at the hallmark IL-2 promoter. Loss of controlled Foxp3-driven epigenetic modification leads to Treg cell insufficiency that enables autoimmunity in susceptible environments.
Related JoVE Video
Distinct subunit pairing criteria within the heterodimeric IL-12 cytokine family.
Mol. Immunol.
Show Abstract
Hide Abstract
The heterodimeric IL-12 cytokine family is characterized by the sharing of three ? (p19, p28, p35) and two ? (p40 and Ebi3) subunits, and includes IL-12 (p35/p40), IL-23 (p19/p40), IL-27 (p28/Ebi3) and IL-35 (p35/Ebi3). In this study, the dimerization interfaces of IL-12 family members were characterized, with emphasis on IL-35. Ebi3 and p35 subunits from human and mouse paired effectively with each other, indicating there is no species barrier to IL-35 dimerization and suggesting a conserved dimerization interface. Specific p35 residues that contribute to formation of the IL-12 interface were assessed for their contribution to the IL-35 interface, and candidate Ebi3 residues were screened for their contribution to both IL-27 and IL-35 interfaces. Several residues were identified as critical to the IL-12 or IL-27 interfaces. Conversely, no single mutation was identified that completely disrupts p35/Ebi3 pairing. Linear alanine scanning mutagenesis on both p35 and Ebi3 subunits was performed, focusing on residues that are conserved between the mouse and human proteins. Additionally, a structure-based alanine-scanning approach in which mutations were clustered based on proximitiy was performed on the p35 subunit. Both approaches suggest that IL-35 has distinct criteria for subunit pairing and is remarkabley less sensitive to structural perturbation than IL-12 and IL-27. Additionally, studies using a panel of anti-p35 and anti-Ebi3 antibodies indicate differential availability of epitopes within IL-12 family members that share these subunits, suggesting that IL-35 has distinct structural features, relative to IL-12 and IL-27. These results may be useful in future directed therapeutic targeting of IL-12 family members.
Related JoVE Video
Prevention of autoimmune diabetes by ectopic pancreatic ?-cell expression of interleukin-35.
Diabetes
Show Abstract
Hide Abstract
Interleukin (IL)-35 is a newly identified inhibitory cytokine used by T regulatory cells to control T cell-driven immune responses. However, the therapeutic potential of native, biologically active IL-35 has not been fully examined. Expression of the heterodimeric IL-35 cytokine was targeted to ?-cells via the rat insulin promoter (RIP) II. Autoimmune diabetes, insulitis, and the infiltrating cellular populations were analyzed. Ectopic expression of IL-35 by pancreatic ?-cells led to substantial, long-term protection against autoimmune diabetes, despite limited intraislet IL-35 secretion. Nonobese diabetic RIP-IL35 transgenic mice exhibited decreased islet infiltration with substantial reductions in the number of CD4(+) and CD8(+) T cells, and frequency of glucose-6-phosphatase catalytic subunit-related protein-specific CD8(+) T cells. Although there were limited alterations in cytokine expression, the reduced T-cell numbers observed coincided with diminished T-cell proliferation and G1 arrest, hallmarks of IL-35 biological activity. These data present a proof of principle that IL-35 could be used as a potent inhibitor of autoimmune diabetes and implicate its potential therapeutic utility in the treatment of type 1 diabetes.
Related JoVE Video
T-cell receptor retrogenic mice: a rapid, flexible alternative to T-cell receptor transgenic mice.
Immunology
Show Abstract
Hide Abstract
The T-cell receptor (TCR) is unique in its complexity. It determines not only positive (life) and negative (death) selection in the thymus, but also mediates proliferation, anergy, differentiation, cytotoxicity and cytokine production in the periphery. Through its association with six CD3 signalling chains (??, ?? and ??), the TCR is capable of recognizing an extensive variety of antigenic peptides, from both pathogens and self-antigens, and translating these interactions into multiple signalling pathways that mediate diverse T-cell developmental and functional responses. The analysis of TCR biology has been revolutionized by the development of TCR transgenic mice, which express a single clonotypic T-cell population, with diverse specificities and genetic backgrounds. However, they are time consuming to generate and characterize, limiting the analysis of large numbers of TCR over a short period of time in multiple genetic backgrounds. The recent development of TCR retrogenic technology resolves these limitations and could in time have a similarly important impact on our understanding of T-cell development and function. In this review, we will discuss the advantages and limitations of retrogenic technology compared with the generation and use of TCR transgenic mice for studying all aspects of T-cell biology.
Related JoVE Video
Germline TRAV5D-4 T-cell receptor sequence targets a primary insulin peptide of NOD mice.
Diabetes
Show Abstract
Hide Abstract
There is accumulating evidence that autoimmunity to insulin B chain peptide, amino acids 9-23 (insulin B:9-23), is central to development of autoimmune diabetes of the NOD mouse model. We hypothesized that enhanced susceptibility to autoimmune diabetes is the result of targeting of insulin by a T-cell receptor (TCR) sequence commonly encoded in the germline. In this study, we aimed to demonstrate that a particular V? gene TRAV5D-4 with multiple junction sequences is sufficient to induce anti-islet autoimmunity by studying retrogenic mouse lines expressing ?-chains with different V? TRAV genes. Retrogenic NOD strains expressing V? TRAV5D-4 ?-chains with many different complementarity determining region (CDR) 3 sequences, even those derived from TCRs recognizing islet-irrelevant molecules, developed anti-insulin autoimmunity. Induction of insulin autoantibodies by TRAV5D-4 ?-chains was abrogated by the mutation of insulin peptide B:9-23 or that of two amino acid residues in CDR1 and 2 of the TRAV5D-4. TRAV13-1, the human ortholog of murine TRAV5D-4, was also capable of inducing in vivo anti-insulin autoimmunity when combined with different murine CDR3 sequences. Targeting primary autoantigenic peptides by simple germline-encoded TCR motifs may underlie enhanced susceptibility to the development of autoimmune diabetes.
Related JoVE Video
The composition and signaling of the IL-35 receptor are unconventional.
Nat. Immunol.
Show Abstract
Hide Abstract
Interleukin 35 (IL-35) belongs to the IL-12 family of heterodimeric cytokines but has a distinct functional profile. IL-35 suppresses T cell proliferation and converts naive T cells into IL-35-producing induced regulatory T cells (iTr35 cells). Here we found that IL-35 signaled through a unique heterodimer of receptor chains IL-12R?2 and gp130 or homodimers of each chain. Conventional T cells were sensitive to IL-35-mediated suppression in the absence of one receptor chain but not both receptor chains, whereas signaling through both chains was required for IL-35 expression and conversion into iTr35 cells. Signaling through the IL-35 receptor required the transcription factors STAT1 and STAT4, which formed a unique heterodimer that bound to distinct sites in the promoters of the genes encoding the IL-12 subunits p35 and Ebi3. This unconventional mode of signaling, distinct from that of other members of the IL-12 family, may broaden the spectrum and specificity of IL-35-mediated suppression.
Related JoVE Video
Verification of 2A peptide cleavage.
Cold Spring Harb Protoc
Show Abstract
Hide Abstract
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. The easiest and most effective way to assess 2A cleavage is to perform transient transfection of 293T cells (human embryonic kidney cells) followed by western blot analysis, as described in this protocol. 293T cells are easy to grow and can be efficiently transfected with a variety of vectors. Cleavage can be assessed by detection with antibodies against the target proteins or anti-2A serum.
Related JoVE Video
Generation of 2A-linked multicistronic cassettes by recombinant PCR.
Cold Spring Harb Protoc
Show Abstract
Hide Abstract
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector. This protocol describes the use of recombinant polymerase chain reaction (PCR) to connect multiple 2A-linked protein sequences. The final construct is subcloned into an expression vector.
Related JoVE Video
Design and construction of 2A peptide-linked multicistronic vectors.
Cold Spring Harb Protoc
Show Abstract
Hide Abstract
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. This article describes the design and construction of 2A peptide-linked multicistronic vectors, which can be used to express multiple proteins from a single open reading frame (ORF). The small 2A peptide sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.