JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genomic classification of serous ovarian cancer with adjacent borderline differentiates RAS-pathway and TP53-mutant tumors and identifies NRAS as an oncogenic driver.
Clin. Cancer Res.
PUBLISHED: 10-16-2014
Show Abstract
Hide Abstract
Purpose: Low-grade serous ovarian carcinomas (LGSC) are Ras-pathway mutated, TP53 wild-type, and frequently associated with borderline tumors. LGSC patients respond poorly to platinum-based chemotherapy and may benefit from pathway-targeted agents. High-grade serous carcinomas (HGSC) are TP53-mutated and are thought to be rarely associated with borderline tumors. We sought to determine whether borderline histology associated with Grade-2 or -3 carcinoma was an indicator of Ras mutation, and explored the molecular relationship between co-existing invasive and borderline histologies. Experimental Design: We reviewed >1200 patients and identified 102 serous carcinomas with adjacent borderline regions for analyses including candidate mutation screening, copy number and gene expression profiling. Results: We found a similar frequency of low, moderate and high-grade carcinomas with co-existing borderline histology. BRAF/KRAS alterations were common in LGSC, however, we also found recurrent NRAS mutations. Whereas borderline tumors harbored BRAF/KRAS mutations, NRAS mutations were restricted to carcinomas, representing the first example of a Ras oncogene with an obligatory association with invasive serous cancer. Co-existing borderline and invasive components showed near identical genomic profiles. Grade-2 cases with co-existing borderline included tumors with molecular features of LGSC, while others were typical of HGSC. However, all Grade-3 carcinomas with co-existing borderline histology were molecularly indistinguishable from typical HGSC. Conclusion: Our findings suggest NRAS is an oncogenic driver in serous ovarian tumors. We demonstrate that borderline histology is an unreliable predictor of Ras-pathway aberration and underscore an important role for molecular classification in identifying patients that may benefit from targeted agents.
Related JoVE Video
Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts.
Mol Oncol
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
Improvement in the ability to target underlying drivers and vulnerabilities of high-grade serous ovarian cancer (HG-SOC) requires the development of molecularly annotated pre-clinical models reflective of clinical responses.
Related JoVE Video
Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube derived high-grade serous ovarian cancers.
Cancer Res.
PUBLISHED: 12-23-2013
Show Abstract
Hide Abstract
Fallopian tube is now generally considered the dominant site of origin for high-grade serous ovarian carcinoma. However, the molecular pathogenesis of fallopian tube-derived serous carcinomas are poorly understood and there are few experimental studies examining the transformation of human fallopian tube cells. Prompted by recent genomic analyses that identified Cyclin E1 (CCNE1) gene amplification as a candidate oncogenic driver in serous ovarian carcinoma, we evaluated the functional role of CCNE1 in serous carcinogenesis. CCNE1 was expressed in early and late stage human tumor samples. In primary human fallopian tube secretory epithelial cells, CCNE1 expression imparted malignant characteristics to untransformed cells if p53 was compromised, promoting an accumulation of DNA damage and altered transcription of DNA damage response genes related to DNA replication stress. Together our findings corroborate the hypothesis that Cyclin E1 dysregulation acts to drive malignant transformation in fallopian tube secretory cells that are the site of origin of serous ovarian carcinomas.
Related JoVE Video
Synthetic lethality between CCNE1 amplification and loss of BRCA1.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-11-2013
Show Abstract
Hide Abstract
High-grade serous ovarian cancers (HGSCs) are characterized by a high frequency of TP53 mutations, BRCA1/2 inactivation, homologous recombination dysfunction, and widespread copy number changes. Cyclin E1 (CCNE1) gene amplification has been reported to occur independently of BRCA1/2 mutation, and it is associated with primary treatment failure and reduced patient survival. Insensitivity of CCNE1-amplified tumors to platinum cross-linking agents may be partly because of an intact BRCA1/2 pathway. Both BRCA1/2 dysfunction and CCNE1 amplification are known to promote genomic instability and tumor progression. These events may be mutually exclusive, because either change provides a path to tumor development, with no selective advantage to having both mutations. Using data from a genome-wide shRNA synthetic lethal screen, we show that BRCA1 and members of the ubiquitin pathway are selectively required in cancers that harbor CCNE1 amplification. Furthermore, we show specific sensitivity of CCNE1-amplified tumor cells to the proteasome inhibitor bortezomib. These findings provide an explanation for the observed mutual exclusivity of CCNE1 amplification and BRCA1/2 loss in HGSC and suggest a unique therapeutic approach for treatment-resistant CCNE1-amplified tumors.
Related JoVE Video
Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer.
Clin. Cancer Res.
PUBLISHED: 09-04-2013
Show Abstract
Hide Abstract
Amplification of cyclin E1 (CCNE1) is associated with poor outcome in breast, lung, and other solid cancers, and is the most prominent structural variant associated with primary treatment failure in high-grade serous ovarian cancer (HGSC). We have previously shown that CCNE1-amplified tumors show amplicon-dependent sensitivity to CCNE1 suppression. Here, we explore targeting CDK2 as a novel therapeutic strategy in CCNE1-amplified cancers and mechanisms of resistance.
Related JoVE Video
Nonequivalent gene expression and copy number alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2 mutations.
Clin. Cancer Res.
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
High-grade serous carcinoma (HGSC) accounts for the majority of epithelial ovarian cancer deaths. Genomic and functional data suggest that approximately half of unselected HGSC have disruption of the BRCA pathway and defects in homologous recombination repair (HRR). Pathway disruption is regarded as imparting a BRCAness phenotype. We explored the molecular changes in HGSC arising in association with specific BRCA1/BRCA2 somatic or germline mutations and in those with BRCA1 DNA promoter methylation.
Related JoVE Video
High levels of genomic aberrations in serous ovarian cancers are associated with better survival.
PLoS ONE
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Genomic instability and copy number alterations in cancer are generally associated with poor prognosis; however, recent studies have suggested that extreme levels of genomic aberrations may be beneficial for the survival outcome for patients with specific tumour types. We investigated the extent of genomic instability in predominantly high-grade serous ovarian cancers (SOC) using two independent datasets, generated in Norway (n?=?74) and Australia (n?=?70), respectively. Genomic instability was quantified by the Total Aberration Index (TAI), a measure of the abundance and genomic size of copy number changes in a tumour. In the Norwegian cohort, patients with TAI above the median revealed significantly prolonged overall survival (p<0.001) and progression-free survival (p<0.05). In the Australian cohort, patients with above median TAI showed prolonged overall survival (p<0.05) and moderately, but not significantly, prolonged progression-free survival. Results were confirmed by univariate and multivariate Cox regression analyses with TAI as a continuous variable. Our results provide further evidence supporting an association between high level of genomic instability and prolonged survival of high-grade SOC patients, possibly as disturbed genome integrity may lead to increased sensitivity to chemotherapeutic agents.
Related JoVE Video
Rethinking ovarian cancer: recommendations for improving outcomes.
Nat. Rev. Cancer
PUBLISHED: 09-24-2011
Show Abstract
Hide Abstract
There have been major advances in our understanding of the cellular and molecular biology of the human malignancies that are collectively referred to as ovarian cancer. At a recent Helene Harris Memorial Trust meeting, an international group of researchers considered actions that should be taken to improve the outcome for women with ovarian cancer. Nine major recommendations are outlined in this Opinion article.
Related JoVE Video
Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers.
PLoS ONE
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5 molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28, LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR. Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression, over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets, including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we provide a novel strategy for targeted therapeutic intervention.
Related JoVE Video
Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis.
PLoS ONE
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Molecular events leading to epithelial ovarian cancer are poorly understood but ovulatory hormones and a high number of life-time ovulations with concomitant proliferation, apoptosis, and inflammation, increases risk. We identified genes that are regulated during the estrous cycle in murine ovarian surface epithelium and analysed these profiles to identify genes dysregulated in human ovarian cancer, using publically available datasets. We identified 338 genes that are regulated in murine ovarian surface epithelium during the estrous cycle and dysregulated in ovarian cancer. Six of seven candidates selected for immunohistochemical validation were expressed in serous ovarian cancer, inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium. Most were overexpressed in ovarian cancer compared with ovarian surface epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2 were expressed as highly in fallopian tube epithelium as in ovarian cancer. We prioritised the 338 genes for those likely to be important for ovarian cancer development by in silico analyses of copy number aberration and mutation using publically available datasets and identified genes with established roles in ovarian cancer as well as novel genes for which we have evidence for involvement in ovarian cancer. Chromosome segregation emerged as an important process in which genes from our list of 338 were over-represented including two (BUB1, NCAPD2) for which there is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface epithelium in proestrus and predicted to have a driver mutation in ovarian cancer, was examined in a larger cohort of serous ovarian cancer where patients with lower NUAK2 expression had shorter overall survival. In conclusion, defining genes that are activated in normal epithelium in the course of ovulation that are also dysregulated in cancer has identified a number of pathways and novel candidate genes that may contribute to the development of ovarian cancer.
Related JoVE Video
Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer.
PLoS ONE
PUBLISHED: 08-31-2010
Show Abstract
Hide Abstract
Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1 resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1 knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of 20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1 expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent. These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network. These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers.
Related JoVE Video
Profiling the cancer genome.
Annu Rev Genomics Hum Genet
PUBLISHED: 07-02-2010
Show Abstract
Hide Abstract
Cancer profiling studies have had a profound impact on our understanding of the biology of cancers in a number of ways, including providing insights into the biological heterogeneity of specific cancer types, identification of novel oncogenes and tumor suppressors, and defining pathways that interact to drive the growth of individual cancers. Several large-scale genomic studies are underway that aim to catalog all biologically significant mutational events in each cancer type, and these findings will allow researchers to understand how mutational networks function within individual tumors. The identification of molecular predictive and prognostic tools to facilitate treatment decisions is an important step for individualized patient therapy and, ultimately, in improving patient outcomes. Whereas there are still significant challenges to implementing genomic testing and targeted therapy into routine clinical practice, rapid technological advancements provide hope for overcoming these obstacles.
Related JoVE Video
International network of cancer genome projects.
, Thomas J Hudson, Warwick Anderson, Axel Artez, Anna D Barker, Cindy Bell, Rosa R Bernabé, M K Bhan, Fabien Calvo, Iiro Eerola, Daniela S Gerhard, Alan Guttmacher, Mark Guyer, Fiona M Hemsley, Jennifer L Jennings, David Kerr, Peter Klatt, Patrik Kolar, Jun Kusada, David P Lane, Frank Laplace, Lu Youyong, Gerd Nettekoven, Brad Ozenberger, Jane Peterson, T S Rao, Jacques Remacle, Alan J Schafer, Tatsuhiro Shibata, Michael R Stratton, Joseph G Vockley, Koichi Watanabe, Huanming Yang, Matthew M F Yuen, Bartha M Knoppers, Martin Bobrow, Anne Cambon-Thomsen, Lynn G Dressler, Stephanie O M Dyke, Yann Joly, Kazuto Kato, Karen L Kennedy, Pilar Nicolás, Michael J Parker, Emmanuelle Rial-Sebbag, Carlos M Romeo-Casabona, Kenna M Shaw, Susan Wallace, Georgia L Wiesner, Nikolajs Zeps, Peter Lichter, Andrew V Biankin, Christian Chabannon, Lynda Chin, Bruno Clément, Enrique De Alava, Françoise Degos, Martin L Ferguson, Peter Geary, D Neil Hayes, Amber L Johns, Arek Kasprzyk, Hidewaki Nakagawa, Robert Penny, Miguel A Piris, Rajiv Sarin, Aldo Scarpa, Marc van de Vijver, P Andrew Futreal, Hiroyuki Aburatani, Mònica Bayés, David D L Botwell, Peter J Campbell, Xavier Estivill, Sean M Grimmond, Ivo Gut, Martin Hirst, Carlos Lopez-Otin, Partha Majumder, Marco Marra, John D McPherson, Zemin Ning, Xose S Puente, Yijun Ruan, Hendrik G Stunnenberg, Harold Swerdlow, Victor E Velculescu, Richard K Wilson, Hong H Xue, Liu Yang, Paul T Spellman, Gary D Bader, Paul C Boutros, Paul Flicek, Gad Getz, Roderic Guigo, Guangwu Guo, David Haussler, Simon Heath, Tim J Hubbard, Tao Jiang, Steven M Jones, Qibin Li, Nuria López-Bigas, Ruibang Luo, Lakshmi Muthuswamy, B F Francis Ouellette, John V Pearson, Víctor Quesada, Benjamin J Raphael, Chris Sander, Terence P Speed, Lincoln D Stein, Joshua M Stuart, Jon W Teague, Yasushi Totoki, Tatsuhiko Tsunoda, Alfonso Valencia, David A Wheeler, Honglong Wu, Shancen Zhao, Guangyu Zhou, Mark Lathrop, Gilles Thomas, Teruhiko Yoshida, Myles Axton, Chris Gunter, Linda J Miller, Junjun Zhang, Syed A Haider, Jianxin Wang, Christina K Yung, Anthony Cros, Anthony Cross, Yong Liang, Saravanamuttu Gnaneshan, Jonathan Guberman, Jack Hsu, Don R C Chalmers, Karl W Hasel, Terry S H Kaan, William W Lowrance, Tohru Masui, Laura Lyman Rodriguez, Catherine Vergely, David D L Bowtell, Nicole Cloonan, Anna deFazio, James R Eshleman, Dariush Etemadmoghadam, Brooke B Gardiner, Brooke A Gardiner, James G Kench, Robert L Sutherland, Margaret A Tempero, Nicola J Waddell, Peter J Wilson, Steve Gallinger, Ming-Sound Tsao, Patricia A Shaw, Gloria M Petersen, Debabrata Mukhopadhyay, Ronald A DePinho, Sarah Thayer, Kamran Shazand, Timothy Beck, Michelle Sam, Lee Timms, Vanessa Ballin, Youyong Lu, Jiafu Ji, Xiuqing Zhang, Feng Chen, Xueda Hu, Qi Yang, Geng Tian, Lianhai Zhang, Xiaofang Xing, Xianghong Li, Zhenggang Zhu, Yingyan Yu, Jun Yu, Jörg Tost, Paul Brennan, Ivana Holcatova, David Zaridze, Alvis Brazma, Lars Egevard, Egor Prokhortchouk, Rosamonde Elizabeth Banks, Mathias Uhlén, Juris Viksna, Fredrik Ponten, Konstantin Skryabin, Ewan Birney, Ake Borg, Anne-Lise Børresen-Dale, Carlos Caldas, John A Foekens, Sancha Martin, Jorge S Reis-Filho, Andrea L Richardson, Christos Sotiriou, Giles Thoms, Laura van't Veer, Daniel Birnbaum, Hélène Blanché, Pascal Boucher, Sandrine Boyault, Jocelyne D Masson-Jacquemier, Iris Pauporté, Xavier Pivot, Anne Vincent-Salomon, Eric Tabone, Charles Theillet, Isabelle Treilleux, Paulette Bioulac-Sage, Thomas Decaens, Dominique Franco, Marta Gut, Didier Samuel, Jessica Zucman-Rossi, Roland Eils, Benedikt Brors, Jan O Korbel, Andrey Korshunov, Pablo Landgraf, Hans Lehrach, Stefan Pfister, Bernhard Radlwimmer, Guido Reifenberger, Michael D Taylor, Christof von Kalle, Partha P Majumder, Paolo Pederzoli, Rita A Lawlor, Massimo Delledonne, Alberto Bardelli, Thomas Gress, David Klimstra, Giuseppe Zamboni, Yusuke Nakamura, Satoru Miyano, Akihiro Fujimoto, Elias Campo, Silvia de Sanjosé, Emili Montserrat, Marcos Gonzalez-Díaz, Pedro Jares, Heinz Himmelbauer, Heinz Himmelbaue, Sílvia Beà, Samuel Aparicio, Douglas F Easton, Francis S Collins, Carolyn C Compton, Eric S Lander, Wylie Burke, Anthony R Green, Stanley R Hamilton, Olli P Kallioniemi, Timothy J Ley, Edison T Liu, Brandon J Wainwright.
Nature
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Related JoVE Video
Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary.
J. Pathol.
PUBLISHED: 03-16-2010
Show Abstract
Hide Abstract
Numerous studies have tested the association between TP53 mutations in ovarian cancer and prognosis but these have been consistently confounded by limitations in study design, methodology, and/or heterogeneity in the sample cohort. High-grade serous (HGS) carcinoma is the most clinically important histological subtype of ovarian cancer. As these tumours may arise from the ovary, Fallopian tube or peritoneum, they are collectively referred to as high-grade pelvic serous carcinoma (HGPSC). To identify the true prevalence of TP53 mutations in HGPSC, we sequenced exons 2-11 and intron-exon boundaries in tumour DNA from 145 patients. HGPSC cases were defined as having histological grade 2 or 3 and FIGO stage III or IV. Surprisingly, pathogenic TP53 mutations were identified in 96.7% (n = 119/123) of HGPSC cases. Molecular and pathological review of mutation-negative cases showed evidence of p53 dysfunction associated with copy number gain of MDM2 or MDM4, or indicated the exclusion of samples as being low-grade serous tumours or carcinoma of uncertain primary site. Overall, p53 dysfunction rate approached 100% of confirmed HGPSCs. No association between TP53 mutation and progression-free or overall survival was found. From this first comprehensive mapping of TP53 mutation rate in a homogeneous group of HGPSC patients, we conclude that mutant TP53 is a driver mutation in the pathogenesis of HGPSC cancers. Because TP53 mutation is almost invariably present in HGPSC, it is not of substantial prognostic or predictive significance.
Related JoVE Video
Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.
PLoS ONE
PUBLISHED: 02-11-2010
Show Abstract
Hide Abstract
Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.
Related JoVE Video
SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer.
Cancer Cell
PUBLISHED: 01-04-2010
Show Abstract
Hide Abstract
Regulators of mitosis have been successfully targeted to enhance response to taxane chemotherapy. Here, we show that the salt inducible kinase 2 (SIK2) localizes at the centrosome, plays a key role in the initiation of mitosis, and regulates the localization of the centrosome linker protein, C-Nap1, through S2392 phosphorylation. Interference with the known SIK2 inhibitor PKA induced SIK2-dependent centrosome splitting in interphase while SIK2 depletion blocked centrosome separation in mitosis, sensitizing ovarian cancers to paclitaxel in culture and in xenografts. Depletion of SIK2 also delayed G1/S transition and reduced AKT phosphorylation. Higher expression of SIK2 significantly correlated with poor survival in patients with high-grade serous ovarian cancers. We believe these data identify SIK2 as a plausible target for therapy in ovarian cancers.
Related JoVE Video
Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling.
Cancer Cell
PUBLISHED: 04-06-2009
Show Abstract
Hide Abstract
We report that knocking down the expression of inositol polyphosphate 4-phosphatase type II (INPP4B) in human epithelial cells, like knockdown of PTEN, resulted in enhanced Akt activation and anchorage-independent growth and enhanced overall motility. In xenograft experiments, overexpression of INPP4B resulted in reduced tumor growth. INPP4B preferentially hydrolyzes phosphatidylinositol-3,4-bisphosphate (PI(3,4)P(2)) with no effect on phosphatidylinositol-3.4.5-triphosphate (PI(3,4,5)P(3)), suggesting that PI(3,4)P(2) and PI(3,4,5)P(3) may cooperate in Akt activation and cell transformation. Dual knockdown of INPP4B and PTEN resulted in cellular senescence. Finally, we found loss of heterozygosity (LOH) at the INPP4B locus in a majority of basal-like breast cancers, as well as in a significant fraction of ovarian cancers, which correlated with lower overall patient survival, suggesting that INPP4B is a tumor suppressor.
Related JoVE Video
Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas.
Clin. Cancer Res.
PUBLISHED: 02-03-2009
Show Abstract
Hide Abstract
A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers.
Related JoVE Video
Prognostically relevant gene signatures of high-grade serous ovarian carcinoma.
J. Clin. Invest.
Show Abstract
Hide Abstract
Because of the high risk of recurrence in high-grade serous ovarian carcinoma (HGS-OvCa), the development of outcome predictors could be valuable for patient stratification. Using the catalog of The Cancer Genome Atlas (TCGA), we developed subtype and survival gene expression signatures, which, when combined, provide a prognostic model of HGS-OvCa classification, named "Classification of Ovarian Cancer" (CLOVAR). We validated CLOVAR on an independent dataset consisting of 879 HGS-OvCa expression profiles. The worst outcome group, accounting for 23% of all cases, was associated with a median survival of 23 months and a platinum resistance rate of 63%, versus a median survival of 46 months and platinum resistance rate of 23% in other cases. Associating the outcome prediction model with BRCA1/BRCA2 mutation status, residual disease after surgery, and disease stage further optimized outcome classification. Ovarian cancer is a disease in urgent need of more effective therapies. The spectrum of outcomes observed here and their association with CLOVAR signatures suggests variations in underlying tumor biology. Prospective validation of the CLOVAR model in the context of additional prognostic variables may provide a rationale for optimal combination of patient and treatment regimens.
Related JoVE Video
Profiles of genomic instability in high-grade serous ovarian cancer predict treatment outcome.
Clin. Cancer Res.
Show Abstract
Hide Abstract
High-grade serous cancer (HGSC) is the most common cancer of the ovary and is characterized by chromosomal instability. Defects in homologous recombination repair (HRR) are associated with genomic instability in HGSC, and are exploited by therapy targeting DNA repair. Defective HRR causes uniparental deletions and loss of heterozygosity (LOH). Our purpose is to profile LOH in HGSC and correlate our findings to clinical outcome, and compare HGSC and high-grade breast cancers.
Related JoVE Video
LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin.
Cancer Res.
Show Abstract
Hide Abstract
High-grade serous cancer (HGSC), the most common subtype of ovarian cancer, often becomes resistant to chemotherapy, leading to poor patient outcomes. Intratumoral heterogeneity occurs in nearly all solid cancers, including ovarian cancer, contributing to the development of resistance mechanisms. In this study, we examined the spatial and temporal genomic variation in HGSC using high-resolution single-nucleotide polymorphism arrays. Multiple metastatic lesions from individual patients were analyzed along with 22 paired pretreatment and posttreatment samples. We documented regions of differential DNA copy number between multiple tumor biopsies that correlated with altered expression of genes involved in cell polarity and adhesion. In the paired primary and relapse cohort, we observed a greater degree of genomic change in tumors from patients that were initially sensitive to chemotherapy and had longer progression-free interval compared with tumors from patients that were resistant to primary chemotherapy. Notably, deletion or downregulation of the lipid transporter LRP1B emerged as a significant correlate of acquired resistance in our analysis. Functional studies showed that reducing LRP1B expression was sufficient to reduce the sensitivity of HGSC cell lines to liposomal doxorubicin, but not to doxorubicin, whereas LRP1B overexpression was sufficient to increase sensitivity to liposomal doxorubicin. Together, our findings underscore the large degree of variation in DNA copy number in spatially and temporally separated tumors in HGSC patients, and they define LRP1B as a potential contributor to the emergence of chemotherapy resistance in these patients.
Related JoVE Video
Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes.
J. Pathol.
Show Abstract
Hide Abstract
The application of paired-end next generation sequencing approaches has made it possible to systematically characterize rearrangements of the cancer genome to base-pair level. Utilizing this approach, we report the first detailed analysis of ovarian cancer rearrangements, comparing high-grade serous and clear cell cancers, and these histotypes with other solid cancers. Somatic rearrangements were systematically characterized in eight high-grade serous and five clear cell ovarian cancer genomes and we report here the identification of > 600 somatic rearrangements. Recurrent rearrangements of the transcriptional regulator gene, TSHZ3, were found in three of eight serous cases. Comparison to breast, pancreatic and prostate cancer genomes revealed that a subset of ovarian cancers share a marked tandem duplication phenotype with triple-negative breast cancers. The tandem duplication phenotype was not linked to BRCA1/2 mutation, suggesting that other common mechanisms or carcinogenic exposures are operative. High-grade serous cancers arising in women with germline BRCA1 or BRCA2 mutation showed a high frequency of small chromosomal deletions. These findings indicate that BRCA1/2 germline mutation may contribute to widespread structural change and that other undefined mechanism(s), which are potentially shared with triple-negative breast cancer, promote tandem chromosomal duplications that sculpt the ovarian cancer genome.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.