JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Protein kinase G-I deficiency induces pulmonary hypertension through Rho A/Rho kinase activation.
Am. J. Pathol.
Show Abstract
Hide Abstract
Protein kinase G (PKG) plays an important role in the regulation of vascular smooth cell contractility and is a critical mediator of nitric oxide signaling, which regulates cardiovascular homeostasis. PKG-I-knockout (Prkg1(-/-)) mice exhibit impaired nitric oxide/cGMP-dependent vasorelaxation and systemic hypertension. However, it remains unknown whether PKG-I deficiency induces pulmonary hypertension. In this study, we characterized the hypertensive pulmonary phenotypes in Prkg1(-/-) mice and delineated the underlying molecular basis. We observed a significant increase in right ventricular systolic pressure in Prkg1(-/-) mice in the absence of systemic hypertension and left-sided heart dysfunction. In addition, we observed marked muscularization of distal pulmonary vessels in Prkg1(-/-) mice. Microangiography revealed impaired integrity of the pulmonary vasculature in Prkg1(-/-) mice. Mechanistically, PKG-I-mediated phosphorylation of Rho A Ser188 was markedly decreased, and the resultant Rho A activation was significantly increased in Prkg1(-/-) lung tissues, which resulted in Rho kinase activation. The i.t. administration of fasudil, a Rho kinase inhibitor, reversed the hypertensive pulmonary phenotype in Prkg1(-/-) mice. Taken together, these data show that PKG-I deficiency induces pulmonary hypertension through Rho A/Rho kinase activation-mediated vasoconstriction and pulmonary vascular remodeling.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.