JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Mitochondrial DNA from El Mirador cave (Atapuerca, Spain) reveals the heterogeneity of Chalcolithic populations.
PLoS ONE
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
Previous mitochondrial DNA analyses on ancient European remains have suggested that the current distribution of haplogroup H was modeled by the expansion of the Bell Beaker culture (ca 4,500-4,050 years BP) out of Iberia during the Chalcolithic period. However, little is known on the genetic composition of contemporaneous Iberian populations that do not carry the archaeological tool kit defining this culture. Here we have retrieved mitochondrial DNA (mtDNA) sequences from 19 individuals from a Chalcolithic sample from El Mirador cave in Spain, dated to 4,760-4,200 years BP and we have analyzed the haplogroup composition in the context of modern and ancient populations. Regarding extant African, Asian and European populations, El Mirador shows affinities with Near Eastern groups. In different analyses with other ancient samples, El Mirador clusters with Middle and Late Neolithic populations from Germany, belonging to the Rössen, the Salzmünde and the Baalberge archaeological cultures but not with contemporaneous Bell Beakers. Our analyses support the existence of a common genetic signal between Western and Central Europe during the Middle and Late Neolithic and points to a heterogeneous genetic landscape among Chalcolithic groups.
Related JoVE Video
Pet fur or fake fur? A forensic approach.
Investig Genet
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In forensic science there are many types of crime that involve animals. Therefore, the identification of the species has become an essential investigative tool. The exhibits obtained from such offences are very often a challenge for forensic experts. Indeed, most biological materials are traces, hair or tanned fur. With hair samples, a common forensic approach should proceed from morphological and structural microscopic examination to DNA analysis. However, the microscopy of hair requires a lot of experience and a suitable comparative database to be able to recognize with a high degree of accuracy that a sample comes from a particular species and then to determine whether it is a protected one. DNA analysis offers the best opportunity to answer the question, 'What species is this?' In our work, we analyzed different samples of fur coming from China used to make hats and collars. Initially, the samples were examined under a microscope, then the mitochondrial DNA was tested for species identification. For this purpose, the genetic markers used were the 12S and 16S ribosomal RNA, while the hypervariable segment I of the control region was analyzed afterwards, to determine whether samples belonged to the same individual.
Related JoVE Video
Homo sapiens in the Americas. Overview of the earliest human expansion in the New World.
J Anthropol Sci
PUBLISHED: 04-08-2013
Show Abstract
Hide Abstract
Although it is widely recognised that America was the last continent to be populated by our species, researchers views on various aspects of this process (e.g. the period in which it occurred, the area from which the colonizing populations came, the number of dispersal waves and the routes taken by these migrations) differ significantly. In this paper, we review both classical data and more recent findings from various research fields - including geology, paleoecology, archaeology, skeletal biology, and genetics - that may shed light on the dynamics of the colonization of the American continent, according to a critical reappraisal of the various hypotheses and models that have been advanced over time to explain this process.
Related JoVE Video
Possible interbreeding in late Italian Neanderthals? New data from the Mezzena jaw (Monti Lessini, Verona, Italy).
PLoS ONE
PUBLISHED: 02-18-2013
Show Abstract
Hide Abstract
In this article we examine the mandible of Riparo Mezzena a Middle Paleolithic rockshelter in the Monti Lessini (NE Italy, Verona) found in 1957 in association with Charentian Mousterian lithic assemblages. Mitochondrial DNA analysis performed on this jaw and on other cranial fragments found at the same stratigraphic level has led to the identification of the only genetically typed Neanderthal of the Italian peninsula and has confirmed through direct dating that it belongs to a late Neanderthal. Our aim here is to re-evaluate the taxonomic affinities of the Mezzena mandible in a wide comparative framework using both comparative morphology and geometric morphometrics. The comparative sample includes mid-Pleistocene fossils, Neanderthals and anatomically modern humans. This study of the Mezzena jaw shows that the chin region is similar to that of other late Neanderthals which display a much more modern morphology with an incipient mental trigone (e.g. Spy 1, La Ferrassie, Saint-Césaire). In our view, this change in morphology among late Neanderthals supports the hypothesis of anatomical change of late Neanderthals and the hypothesis of a certain degree of interbreeding with AMHs that, as the dating shows, was already present in the European territory. Our observations on the chin of the Mezzena mandible lead us to support a non abrupt phylogenetic transition for this period in Europe.
Related JoVE Video
Origins and evolution of the Etruscans mtDNA.
PLoS ONE
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
The Etruscan culture is documented in Etruria, Central Italy, from the 8(th) to the 1(st) century BC. For more than 2,000 years there has been disagreement on the Etruscans biological origins, whether local or in Anatolia. Genetic affinities with both Tuscan and Anatolian populations have been reported, but so far all attempts have failed to fit the Etruscans and modern populations in the same genealogy. We extracted and typed the hypervariable region of mitochondrial DNA of 14 individuals buried in two Etruscan necropoleis, analyzing them along with other Etruscan and Medieval samples, and 4,910 contemporary individuals from the Mediterranean basin. Comparing ancient (30 Etruscans, 27 Medieval individuals) and modern DNA sequences (370 Tuscans), with the results of millions of computer simulations, we show that the Etruscans can be considered ancestral, with a high degree of confidence, to the current inhabitants of Casentino and Volterra, but not to the general contemporary population of the former Etruscan homeland. By further considering two Anatolian samples (35 and 123 individuals) we could estimate that the genetic links between Tuscany and Anatolia date back to at least 5,000 years ago, strongly suggesting that the Etruscan culture developed locally, and not as an immediate consequence of immigration from the Eastern Mediterranean shores.
Related JoVE Video
Monitoring DNA contamination in handled vs. directly excavated ancient human skeletal remains.
PLoS ONE
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
Bones, teeth and hair are often the only physical evidence of human or animal presence at an archaeological site; they are also the most widely used sources of samples for ancient DNA (aDNA) analysis. Unfortunately, the DNA extracted from ancient samples, already scarce and highly degraded, is widely susceptible to exogenous contaminations that can affect the reliability of aDNA studies. We evaluated the molecular effects of sample handling on five human skeletons freshly excavated from a cemetery dated between the 11 to the 14(th) century. We collected specimens from several skeletal areas (teeth, ribs, femurs and ulnas) from each individual burial. We then divided the samples into two different sets: one labeled as "virgin samples" (i.e. samples that were taken by archaeologists under contamination-controlled conditions and then immediately sent to the laboratory for genetic analyses), and the second called "lab samples"(i.e. samples that were handled without any particular precautions and subject to normal washing, handling and measuring procedures in the osteological lab). Our results show that genetic profiles from "lab samples" are incomplete or ambiguous in the different skeletal areas while a different outcome is observed in the "virgin samples" set. Generally, all specimens from different skeletal areas in the exception of teeth present incongruent results between "lab" and "virgin" samples. Therefore teeth are less prone to contamination than the other skeletal areas we analyzed and may be considered a material of choice for classical aDNA studies. In addition, we showed that bones can also be a good candidate for human aDNA analysis if they come directly from the excavation site and are accompanied by a clear taphonomic history.
Related JoVE Video
Genetic evidence does not support an Etruscan origin in Anatolia.
Am. J. Phys. Anthropol.
PUBLISHED: 01-11-2013
Show Abstract
Hide Abstract
The debate on the origins of Etruscans, documented in central Italy between the eighth century BC and the first century AD, dates back to antiquity. Herodotus described them as a group of immigrants from Lydia, in Western Anatolia, whereas for Dionysius of Halicarnassus they were an indigenous population. Dionysius view is shared by most modern archeologists, but the observation of similarities between the (modern) mitochondrial DNAs (mtDNAs) of Turks and Tuscans was interpreted as supporting an Anatolian origin of the Etruscans. However, ancient DNA evidence shows that only some isolates, and not the bulk of the modern Tuscan population, are genetically related to the Etruscans. In this study, we tested alternative models of Etruscan origins by Approximate Bayesian Computation methods, comparing levels of genetic diversity in the mtDNAs of modern and ancient populations with those obtained by millions of computer simulations. The results show that the observed genetic similarities between modern Tuscans and Anatolians cannot be attributed to an immigration wave from the East leading to the onset of the Etruscan culture in Italy. Genetic links between Tuscany and Anatolia do exist, but date back to a remote stage of prehistory, possibly but not necessarily to the spread of farmers during the Neolithic period.
Related JoVE Video
A revised timescale for human evolution based on ancient mitochondrial genomes.
Curr. Biol.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought.
Related JoVE Video
The complete mitochondrial genome of an 11,450-year-old aurochsen (Bos primigenius) from Central Italy.
BMC Evol. Biol.
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs.
Related JoVE Video
Population dynamic of the extinct European aurochs: genetic evidence of a north-south differentiation pattern and no evidence of post-glacial expansion.
BMC Evol. Biol.
PUBLISHED: 03-26-2010
Show Abstract
Hide Abstract
The aurochs (Bos primigenius) was a large bovine that ranged over almost the entirety of the Eurasian continent and North Africa. It is the wild ancestor of the modern cattle (Bos taurus), and went extinct in 1627 probably as a consequence of human hunting and the progressive reduction of its habitat. To investigate in detail the genetic history of this species and to compare the population dynamics in different European areas, we analysed Bos primigenius remains from various sites across Italy.
Related JoVE Video
The microcephalin ancestral allele in a Neanderthal individual.
PLoS ONE
PUBLISHED: 01-19-2010
Show Abstract
Hide Abstract
The high frequency (around 0.70 worldwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal.
Related JoVE Video
Inferring genealogical processes from patterns of Bronze-Age and modern DNA variation in Sardinia.
Mol. Biol. Evol.
PUBLISHED: 12-02-2009
Show Abstract
Hide Abstract
The ancient inhabitants of a region are often regarded as ancestral, and hence genetically related, to the modern dwellers (for instance, in studies of admixture), but so far, this assumption has not been tested empirically using ancient DNA data. We studied mitochondrial DNA (mtDNA) variation in Sardinia, across a time span of 2,500 years, comparing 23 Bronze-Age (nuragic) mtDNA sequences with those of 254 modern individuals from two regions, Ogliastra (a likely genetic isolate) and Gallura, and considering the possible impact of gene flow from mainland Italy. To understand the genealogical relationships between past and present populations, we developed seven explicit demographic models; we tested whether these models can account for the levels and patterns of genetic diversity in the data and which one does it best. Extensive simulation based on a serial coalescent algorithm allowed us to compare the posterior probability of each model and estimate the relevant evolutionary (mutation and migration rates) and demographic (effective population sizes, times since population splits) parameters, by approximate Bayesian computations. We then validated the analyses by investigating how well parameters estimated from the simulated data can reproduce the observed data set. We show that a direct genealogical continuity between Bronze-Age Sardinians and the current people of Ogliastra, but not Gallura, has a much higher probability than any alternative scenarios and that genetic diversity in Gallura evolved largely independently, owing in part to gene flow from the mainland.
Related JoVE Video
Genealogical discontinuities among Etruscan, Medieval, and contemporary Tuscans.
Mol. Biol. Evol.
PUBLISHED: 07-01-2009
Show Abstract
Hide Abstract
The available mitochondrial DNA (mtDNA) data do not point to clear genetic relationships between current Tuscans and the Bronze-Age inhabitants of Tuscany, the Etruscans. To understand how and when such a genetic discontinuity may have arisen, we extracted and typed the mtDNAs of 27 medieval Tuscans from an initial sample of 61, spanning a period between the 10th and 15th century AD. We then tested by serial coalescent simulation various models describing the genealogical relationships among past and current inhabitants of Tuscany, the latter including three samples (from Murlo, Volterra, and Casentino) that were recently claimed to be of Etruscan descent. Etruscans and medieval Tuscans share three mitochondrial haplotypes but fall in distinct branches of the mitochondrial genealogy in the only model that proved compatible with the data. Under that model, contemporary people of Tuscany show clear genetic relationships with Medieval people, but not with the Etruscans, along the female lines. No evidence of excess mutation was found in the Etruscan DNAs by a Bayesian test, and so there is no reason to suspect that these results are biased by systematic contamination of the ancient sequences or laboratory artefacts. Extensive demographic changes before AD 1000 are thus the simplest explanation for the differences between the contemporary and the Bronze-Age mtDNAs of Tuscany. Accordingly, genealogical continuity between ancient and modern populations of the same area does not seem a safe general assumption, but rather a hypothesis that, when possible, should be tested using ancient DNA analysis.
Related JoVE Video
Origin and diet of the prehistoric hunter-gatherers on the mediterranean island of Favignana (Ègadi Islands, Sicily).
PLoS ONE
Show Abstract
Hide Abstract
Hunter-gatherers living in Europe during the transition from the late Pleistocene to the Holocene intensified food acquisition by broadening the range of resources exploited to include marine taxa. However, little is known on the nature of this dietary change in the Mediterranean Basin. A key area to investigate this issue is the archipelago of the Ègadi Islands, most of which were connected to Sicily until the early Holocene. The site of Grotta dOriente, on the present-day island of Favignana, was occupied by hunter-gatherers when Postglacial environmental changes were taking place (14,000-7,500 cal BP). Here we present the results of AMS radiocarbon dating, palaeogenetic and isotopic analyses undertaken on skeletal remains of the humans buried at Grotta dOriente. Analyses of the mitochondrial hypervariable first region of individual Oriente B, which belongs to the HV-1 haplogroup, suggest for the first time on genetic grounds that humans living in Sicily during the early Holocene could have originated from groups that migrated from the Italian Peninsula around the Last Glacial Maximum. Carbon and nitrogen isotope analyses show that the Upper Palaeolithic and Mesolithic hunter-gatherers of Favignana consumed almost exclusively protein from terrestrial game and that there was only a slight increase in marine food consumption from the late Pleistocene to the early Holocene. This dietary change was similar in scale to that at sites on mainland Sicily and in the rest of the Mediterranean, suggesting that the hunter-gatherers of Grotta dOriente did not modify their subsistence strategies specifically to adapt to the progressive isolation of Favignana. The limited development of technologies for intensively exploiting marine resources was probably a consequence both of Mediterranean oligotrophy and of the small effective population size of these increasingly isolated human groups, which made innovation less likely and prevented transmission of fitness-enhancing adaptations.
Related JoVE Video
Ancient DNA studies: new perspectives on old samples.
Genet. Sel. Evol.
Show Abstract
Hide Abstract
In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field.
Related JoVE Video
Specific inactivation of two immunomodulatory SIGLEC genes during human evolution.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Sialic acid-recognizing Ig-like lectins (Siglecs) are signaling receptors that modulate immune responses, and are targeted for interactions by certain pathogens. We describe two primate Siglecs that were rendered nonfunctional by single genetic events during hominin evolution after our common ancestor with the chimpanzee. SIGLEC13 was deleted by an Alu-mediated recombination event, and a single base pair deletion disrupted the ORF of SIGLEC17. Siglec-13 is expressed on chimpanzee monocytes, innate immune cells that react to bacteria. The human SIGLEC17P pseudogene mRNA is still expressed at high levels in human natural killer cells, which bridge innate and adaptive immune responses. As both resulting pseudogenes are homozygous in all human populations, we resurrected the originally encoded proteins and examined their functions. Chimpanzee Siglec-13 and the resurrected human Siglec-17 recruit a signaling adapter and bind sialic acids. Expression of either Siglec in innate immune cells alters inflammatory cytokine secretion in response to Toll-like receptor-4 stimulation. Both Siglecs can also be engaged by two potentially lethal sialylated bacterial pathogens of newborns and infants, agents with a potential impact on reproductive fitness. Neanderthal and Denisovan genomes show human-like sequences at both loci, corroborating estimates that the initial pseudogenization events occurred in the common ancestral population of these hominins. Both loci also show limited polymorphic diversity, suggesting selection forces predating the origin of modern humans. Taken together, these data suggest that genetic elimination of Siglec-13 and/or Siglec-17 represents signatures of infectious and/or other inflammatory selective processes contributing to population restrictions during hominin origins.
Related JoVE Video
The Mountain Meadows Massacre and "poisoned springs": scientific testing of the more recent, anthrax theory.
Int. J. Legal Med.
Show Abstract
Hide Abstract
It has been recorded that one of the possible causes that eventually escalated into the 1857 manslaughter at Mountain Meadows in Southern Utah was the poisoning of an open spring by the Fancher-Baker party as they crossed the Utah territory on their way from Arkansas to California. Historical accounts report that a number of cattle died, followed by human casualties from those that came in contact with the dead animals. Even after the Arkansas party departed, animals continued to perish and people were still afflicted by some unknown plague. Proctor Hancock Robison, a local 14-year-old boy, died shortly after skinning one of the "poisoned" cows. A careful review of the historical records, along with the more recent scientific literature, seems to exclude the likelihood of actual poisoning in favor of a more recent theory that would point to the bacterium Bacillus anthracis as the possible cause of human and animal deaths. In order to test this hypothesis, Proctors remains were exhumed, identified through mitochondrial DNA analysis, and tested for the presence of anthrax spores. Although preliminary testing of remains and soil was negative, description of the clinical conditions that affected Proctor and other individuals does not completely rule out the hypothesis of death by anthrax.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.