JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.
Nat. Biotechnol.
PUBLISHED: 02-25-2014
Show Abstract
Hide Abstract
Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers. Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation.
Related JoVE Video
Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites.
Cell Rep
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
N6-methyladenosine (m6A) is a common modification of mRNA with potential roles in fine-tuning the RNA life cycle. Here, we identify a dense network of proteins interacting with METTL3, a component of the methyltransferase complex, and show that three of them (WTAP, METTL14, and KIAA1429) are required for methylation. Monitoring m6A levels upon WTAP depletion allowed the definition of accurate and near single-nucleotide resolution methylation maps and their classification into WTAP-dependent and -independent sites. WTAP-dependent sites are located at internal positions in transcripts, topologically static across a variety of systems we surveyed, and inversely correlated with mRNA stability, consistent with a role in establishing "basal" degradation rates. WTAP-independent sites form at the first transcribed base as part of the cap structure and are present at thousands of sites, forming a previously unappreciated layer of transcriptome complexity. Our data shed light on the proteomic and transcriptional underpinnings of this RNA modification.
Related JoVE Video
Brief report: importance of SOX8 for in vitro chondrogenic differentiation of human mesenchymal stromal cells.
Stem Cells
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
The transcription factor SOX9 is believed to be the master regulator of chondrogenesis. SOX8 is another SOX group E transcription factor with a high degree of homology to SOX9. Here, we demonstrate that SOX8 mRNA levels decrease during in vitro dedifferentiation of human articular chondrocytes and increase during chondrogenic differentiation of mesenchymal stromal cells. Knockdown of SOX9 reduced the expression of SOX8, COL2A1, and a range of other chondrogenic molecules. SOX8 knockdown reduced the expression of a large number of overlapping chondrogenic molecules, but not SOX9. Neither siSOX9 nor siSOX8 altered expression of the hypertrophic marker gene COL10A1. siSOX9, but not siSOX8 led to upregulation of hypertrophy associated genes MMP13 and ALPL. Transfection of synthetic SOX5, 6, and 9 mRNA trio upregulated SOX8, COL2A1, and ACAN, but not COL10A1 mRNA. Replacement of synthetic SOX9 by SOX8 in the SOX trio showed similar but lower chondrogenic effect. We conclude that SOX8 expression is regulated by SOX9, and that both together with SOX5 and SOX6 are required as a SOX quartet for transcription of COL2A1 and a large number of other chondrogenic molecules. Neither SOX8 nor SOX9 affect COL10A1 expression, but SOX9 inhibits chondrocyte hypertrophy through inhibition of MMP13 and ALPL expression.
Related JoVE Video
Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy.
Biochem. Soc. Trans.
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
It is now becoming largely accepted that the non-coding portion of the genome, rather than its coding counterpart, is likely to account for the greater complexity of higher eukaryotes. Moreover, non-coding RNAs have been demonstrated to participate in regulatory circuitries that are crucial for development and differentiation. Whereas the biogenesis and function of small non-coding RNAs, particularly miRNAs (microRNAs), has been extensively clarified in many eukaryotic systems, very little is known about the long non-coding counterpart of the transcriptome. In the present review, we revise the current knowledge of how small non-coding RNAs and lncRNAs (long non-coding RNAs) impinge on circuitries controlling proper muscle differentiation and homoeostasis and how their biogenesis is regulated. Moreover, we provide new insights into an additional mechanism of post-transcriptional regulation mediated by lncRNAs, which, acting as miRNA sponges, have an impact on the distribution of miRNA molecules on their targets with features similar to those described for ceRNAs (competing endogenous RNAs).
Related JoVE Video
A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.
Cell
PUBLISHED: 08-01-2011
Show Abstract
Hide Abstract
Recently, a new regulatory circuitry has been identified in which RNAs can crosstalk with each other by competing for shared microRNAs. Such competing endogenous RNAs (ceRNAs) regulate the distribution of miRNA molecules on their targets and thereby impose an additional level of post-transcriptional regulation. Here we identify a muscle-specific long noncoding RNA, linc-MD1, which governs the time of muscle differentiation by acting as a ceRNA in mouse and human myoblasts. Downregulation or overexpression of linc-MD1 correlate with retardation or anticipation of the muscle differentiation program, respectively. We show that linc-MD1 "sponges" miR-133 and miR-133 [corrected] to regulate the expression of MAML1 and MEF2C, transcription factors that activate muscle-specific gene expression. Finally, we demonstrate that linc-MD1 exerts the same control over differentiation timing in human myoblasts, and that its levels are strongly reduced in Duchenne muscle cells. We conclude that the ceRNA network plays an important role in muscle differentiation.
Related JoVE Video
miRNAs as serum biomarkers for Duchenne muscular dystrophy.
EMBO Mol Med
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
Dystrophin absence in Duchenne muscular dystrophy (DMD) causes severe muscle degeneration. We describe that, as consequence of fibre damage, specific muscle-miRNAs are released in to the bloodstream of DMD patients and their levels correlate with the severity of the disease. The same miRNAs are abundant also in the blood of mdx mice and recover to wild-type levels in animals cured through exon skipping. Even though creatine kinase (CK) blood levels have been utilized as diagnostic markers of several neuromuscular diseases, including DMD, we demonstrate that they correlate less well with the disease severity. Although the analysis of a larger number of patients should allow to obtain more refined correlations with the different stages of disease progression, we propose that miR-1, miR-133, and miR-206 are new and valuable biomarkers for the diagnosis of DMD and possibly also for monitoring the outcomes of therapeutic interventions in humans. Despite many different DMD therapeutic approaches are now entering clinical trials, a unifying method for assessing the benefit of different treatments is still lacking.
Related JoVE Video
miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy.
EMBO Rep.
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
Duchenne muscular dystrophy (DMD)--which is caused by mutations in the dystrophin gene-is one of the most severe myopathies. Among therapeutic strategies, exon skipping allows the rescue of dystrophin synthesis through the production of a shorter but functional messenger RNA. Here, we report the identification of a microRNA--miR-31--that represses dystrophin expression by targeting its 3 untranslated region. In human DMD myoblasts treated with exon skipping, we demonstrate that miR-31 inhibition increases dystrophin rescue. These results indicate that interfering with miR-31 activity can provide an ameliorating strategy for those DMD therapies that are aimed at efficiently recovering dystrophin synthesis.
Related JoVE Video
MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway.
Cell Metab.
PUBLISHED: 03-23-2010
Show Abstract
Hide Abstract
In Duchenne muscular dystrophy (DMD) the absence of dystrophin at the sarcolemma delocalizes and downregulates nitric oxide synthase (nNOS); this alters S-nitrosylation of HDAC2 and its chromatin association. We show that the differential HDAC2 nitrosylation state in Duchenne versus wild-type conditions deregulates the expression of a specific subset of microRNA genes. Several circuitries controlled by the identified microRNAs, such as the one linking miR-1 to the G6PD enzyme and the redox state of cell, or miR-29 to extracellular proteins and the fibrotic process, explain some of the DMD pathogenetic traits. We also show that, at variance with other myomiRs, miR-206 escapes from the dystrophin-nNOS control being produced in activated satellite cells before dystrophin expression; in these cells, it contributes to muscle regeneration through repression of the satellite specific factor, Pax7. We conclude that the pathway activated by dystrophin/nNOS controls several important circuitries increasing the robustness of the muscle differentiation program.
Related JoVE Video
Coupled RNA processing and transcription of intergenic primary microRNAs.
Mol. Cell. Biol.
PUBLISHED: 08-10-2009
Show Abstract
Hide Abstract
The first step in microRNA (miRNA) biogenesis occurs in the nucleus and is mediated by the Microprocessor complex containing the RNase III-like enzyme Drosha and its cofactor DGCR8. Here we show that the 5-->3 exonuclease Xrn2 associates with independently transcribed miRNAs and, in combination with Drosha processing, attenuates transcription in downstream regions. We suggest that, after Drosha cleavage, a torpedo-like mechanism acts on nascent long precursor miRNAs, whereby Xrn2 exonuclease degrades the RNA polymerase II-associated transcripts inducing its release from the template. While involved in primary transcript termination, this attenuation effect does not restrict clustered miRNA expression, which, in the majority of cases, is separated by short spacers. We also show that transcripts originating from a miRNA promoter are retained on the chromatin template and are more efficiently processed than those produced from mRNA or snRNA Pol II-dependent promoters. These data imply that coupling between transcription and processing promotes efficient expression of independently transcribed miRNAs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.