JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.
Ecology
PUBLISHED: 09-19-2014
Show Abstract
Hide Abstract
Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species' traits when assessing corridor utility.
Related JoVE Video
Sociogenomics of cooperation and conflict during colony founding in the fire ant Solenopsis invicta.
PLoS Genet.
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the "winner") in pleometrotic associations survives and takes the lead of the young colony while the others (the "losers") are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queens physiological state is secondary. These results highlight the powerful influence of social environment on regulation of the genomic state, physiology and ultimately, social behavior of animals.
Related JoVE Video
A Y-like social chromosome causes alternative colony organization in fire ants.
Nature
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Intraspecific variability in social organization is common, yet the underlying causes are rarely known. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene. Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13?megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.
Related JoVE Video
Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China.
Mol. Ecol.
PUBLISHED: 12-19-2011
Show Abstract
Hide Abstract
We characterized patterns of genetic variation in populations of the fire ant Solenopsis invicta in China using mitochondrial DNA sequences and nuclear microsatellite loci to test predictions as to how propagule pressure and subsequent dispersal following establishment jointly shape the invasion success of this ant in this recently invaded area. Fire ants in Wuchuan (Guangdong Province) are genetically differentiated from those found in other large infested areas of China. The immediate source of ants in Wuchuan appears to be somewhere near Texas, which ranks first among the southern USA infested states in the exportation of goods to China. Most colonies from spatially distant, outlying areas in China are genetically similar to one another and appear to share a common source (Wuchuan, Guangdong Province), suggesting that long-distance jump dispersal has been a prevalent means of recent spread of fire ants in China. Furthermore, most colonies at outlier sites are of the polygyne social form (featuring multiple egg-laying queens per nest), reinforcing the important role of this social form in the successful invasion of new areas and subsequent range expansion following invasion. Several analyses consistently revealed characteristic signatures of genetic bottlenecks for S. invicta populations in China. The results of this study highlight the invasive potential of this pest ant, suggest that the magnitude of international trade may serve as a predictor of propagule pressure and indicate that rates and patterns of subsequent range expansion are partly determined by the interplay between species traits and the trade and transportation networks.
Related JoVE Video
Relaxed selection is a precursor to the evolution of phenotypic plasticity.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-12-2011
Show Abstract
Hide Abstract
Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.
Related JoVE Video
Wolbachia wSinvictaA infections in natural populations of the fire ant Solenopsis invicta: testing for phenotypic effects.
J. Insect Sci.
PUBLISHED: 04-30-2011
Show Abstract
Hide Abstract
Wolbachia are intracellular bacteria that commonly infect many arthropods and some nematodes. In arthropods, these maternally transmitted bacteria often induce a variety of phenotypic effects to enhance their own spread within host populations. Wolbachia phenotypic effects generally either provide benefits to infected host females (cytoplasmic incompatibility, positive fitness effects) or bias host sex ratio in favor of females (male-killing, parthenogenesis, feminization), all of which increase the relative production of infected females in host populations. Wolbachia surveys have found infections to be exceedingly common in ants, but little is known at this juncture as to what phenotypic effects, if any, they induce in this group. Previous studies have demonstrated that individuals from native populations of the invasive fire ant Solenopsis invicta commonly harbor one or more of three Wolbachia variants. One of the variants, wSinvictaA, typically occurs at low prevalence in S. invicta populations, appears to have been transmitted horizontally into S. invicta three or more times, and has been lost repeatedly from host lineages over time. In order to determine the phenotypic effects and likely population dynamics of wSinvictaA infections in these ants, brood production patterns of newly mated fire ant queens were studied during simulated claustral founding and measured wSinvictaA transmission fidelity within mature single-queen families. No clear evidence was found for Wolbachia-induced cytoplasmic incompatibility, significant fitness effects, or male-killing. Maternal transmission was perfect to both virgin queens and males. Possible mechanisms for how this variant could be maintained in host populations are discussed.
Related JoVE Video
Global invasion history of the fire ant Solenopsis invicta.
Science
PUBLISHED: 02-26-2011
Show Abstract
Hide Abstract
The fire ant Solenopsis invicta is a significant pest that was inadvertently introduced into the southern United States almost a century ago and more recently into California and other regions of the world. An assessment of genetic variation at a diverse set of molecular markers in 2144 fire ant colonies from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta have occurred into newly invaded areas and that the main southern U.S. population is probably the source of all but one of these introductions. The sole exception involves a putative serial invasion from the southern United States to California to Taiwan. These results illustrate in stark fashion a severe negative consequence of an increasingly massive and interconnected global trade and travel system.
Related JoVE Video
Odorant binding proteins of the red imported fire ant, Solenopsis invicta: an example of the problems facing the analysis of widely divergent proteins.
PLoS ONE
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
We describe the odorant binding proteins (OBPs) of the red imported fire ant, Solenopsis invicta, obtained from analyses of an EST library and separate 454 sequencing runs of two normalized cDNA libraries. We identified a total of 18 putative functional OBPs in this ant. A third of the fire ant OBPs are orthologs to honey bee OBPs. Another third of the OBPs belong to a lineage-specific expansion, which is a common feature of insect OBP evolution. Like other OBPs, the different fire ant OBPs share little sequence similarity (? 20%), rendering evolutionary analyses difficult. We discuss the resulting problems with sequence alignment, phylogenetic analysis, and tests of selection. As previously suggested, our results underscore the importance for careful exploration of the sensitivity to the effects of alignment methods for data comprising widely divergent sequences.
Related JoVE Video
The genome of the fire ant Solenopsis invicta.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.
Related JoVE Video
Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species.
Mol. Biol. Evol.
PUBLISHED: 12-20-2010
Show Abstract
Hide Abstract
Ants provide remarkable examples of equivalent genotypes developing into divergent and discrete phenotypes. Diploid eggs can develop either into queens, which specialize in reproduction, or workers, which participate in cooperative tasks such as building the nest, collecting food, and rearing the young. In contrast, the differentiation between males and females generally depends upon whether eggs are fertilized, with fertilized (diploid) eggs giving rise to females and unfertilized (haploid) eggs giving rise to males. To obtain a comprehensive picture of the relative contributions of gender (sex), caste, developmental stage, and species divergence to gene expression evolution, we investigated gene expression patterns in pupal and adult queens, workers, and males of two species of fire ants, Solenopsis invicta and S. richteri. Microarray hybridizations revealed that variation in gene expression profiles is influenced more by developmental stage than by caste membership, sex, or species identity. The second major contributor to variation in gene expression was the combination of sex and caste. Although workers and queens share equivalent diploid nuclear genomes, they have highly distinctive patterns of gene expression in both the pupal and the adult stages, as might be expected given their extraordinary level of phenotypic differentiation. Overall, the difference in the proportion of differentially expressed genes was greater between workers and males than between workers and queens or queens and males, consistent with the fact that workers and males share neither gender nor reproductive capability. Moreover, between-species comparisons revealed that the greatest difference in gene expression patterns occurred in adult workers, a finding consistent with the fact that adult workers most directly experience the distinct external environments characterizing the different habitats occupied by the two species. Thus, much of the evolution of gene expression in ants may occur in the worker caste, despite the fact that these individuals are largely or completely sterile. Analyses of gene expression evolution revealed a combination of positive selection and relaxation of stabilizing selection as important factors driving the evolution of such genes.
Related JoVE Video
Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae).
BMC Evol. Biol.
PUBLISHED: 10-07-2010
Show Abstract
Hide Abstract
Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships.
Related JoVE Video
PBAN gene architecture and expression in the fire ant, solenopsis invicta.
J. Insect Physiol.
PUBLISHED: 08-25-2010
Show Abstract
Hide Abstract
The PBAN/pyrokinin peptides are a major neuropeptide family characterized by a common FXPRLamide at the C-termini. These peptides are distributed ubiquitously in the Insecta and are involved in many essential endocrine functions, e.g. pheromone production. We report the gene architecture of the fire ant Solenopsis invicta PBAN (Soi-PBAN) gene, including the exon and intron boundaries. Furthermore, we quantified expression of the Soi-PBAN mRNA in the head, thorax and abdomen of the fire ant. The Soi-PBAN gene is comprised three exons and two introns, all composed of 13,358 nucleotides, which is 2-4 times larger than lepidopteran PBAN genes. The overall pattern of the PBAN immunoreactive neuron number and localization was similar for female and male alates, inseminated female delates, workers and queens. The Soi-PBAN mRNA expression level was highest in the head, followed by the thorax, and abdomen of adult ants. Expression in the abdominal tissues was expected to be similar to the head, or at least higher than thorax because strong PBAN immunoreactive neurons were detected previously in brain-subesophageal and abdominal ganglia. This result suggests that another FXPRL gene could be dominant in the abdomen rather than Soi-PBAN gene.
Related JoVE Video
A new method for distinguishing colony social forms of the fire ant, Solenopsis invicta.
J. Insect Sci.
PUBLISHED: 08-03-2010
Show Abstract
Hide Abstract
Two distinct forms of colony social organization occur in the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae): colonies of the monogyne social form are headed by a single egg-laying queen, whereas those of the polygyne social form contain multiple egg-laying queens. This major difference in social organization is associated with genetic variation at a single gene (Gp-9) whereby all polygyne queens possess at least one b-like allele, while monogyne queens lack such b-like alleles and instead harbor B-like alleles only. Further, a recent study of native populations revealed that all b-like alleles in polygyne queens consistently contain three diagnostic amino acid residues: possession of only one or two of these critical residues is not sufficient for polygyny. TaqMan allelic discrimination assays were developed to survey the variable nucleotide sites associated with these three critical amino acid residues. The assays were validated by surveying nests of known social form from the species introduced in the USA and from native South American ranges, as well as by comparing the results to Gp-9 sequence data from a subset of samples. The results demonstrate these new molecular assays consistently and accurately identify the variable nucleotides at all three sites characteristic of the B-like and b-like Gp-9 allele classes, allowing for accurate determination of colony social form.
Related JoVE Video
Molecular diversity of the microsporidium Kneallhazia solenopsae reveals an expanded host range among fire ants in North America.
J. Invertebr. Pathol.
PUBLISHED: 05-11-2010
Show Abstract
Hide Abstract
Kneallhazia solenopsae is a pathogenic microsporidium that infects the fire ants Solenopsis invicta and Solenopsis richteri in South America and the USA. In this study, we analyzed the prevalence and molecular diversity of K. solenopsae in fire ants from North and South America. We report the first empirical evidence of K. solenopsae infections in the tropical fire ant, Solenopsis geminata, and S. geminata×Solenopsis xyloni hybrids, revealing an expanded host range for this microsporidium. We also analyzed the molecular diversity at the 16S ribosomal RNA gene in K. solenopsae from the ant hosts S.invicta, S. richteri, S. geminata and S. geminata×S. xyloni hybrids from North America, Argentina and Brazil. We found 22 16S haplotypes. One of these haplotypes (WD_1) appears to be widely distributed, and is found in S. invicta from the USA and S. geminata from southern Mexico. Phylogenetic analyses of 16S sequences revealed that K. solenopsae haplotypes fall into one of two major clades that are differentiated by 2-3%. In some cases, multiple K. solenopsae haplotypes per colony were found, suggesting either an incomplete homogenization among gene copies within the 16S gene cluster or multiple K. solenopsae variants simultaneously infecting host colonies.
Related JoVE Video
Species delimitation: a case study in a problematic ant taxon.
Syst. Biol.
PUBLISHED: 12-14-2009
Show Abstract
Hide Abstract
Species delimitation has been invigorated as a discipline in systematics by an influx of new character sets, analytical methods, and conceptual advances. We use genetic data from 68 markers, combined with distributional, bioclimatic, and coloration information, to hypothesize boundaries of evolutionarily independent lineages (species) within the widespread and highly variable nominal fire ant species Solenopsis saevissima, a member of a species group containing invasive pests as well as species that are models for ecological and evolutionary research. Our integrated approach uses diverse methods of analysis to sequentially test whether populations meet specific operational criteria (contingent properties) for candidacy as morphologically cryptic species, including genetic clustering, monophyly, reproductive isolation, and occupation of distinctive niche space. We hypothesize that nominal S. saevissima comprises at least 4-6 previously unrecognized species, including several pairs whose parapatric distributions implicate the development of intrinsic premating or postmating barriers to gene flow. Our genetic data further suggest that regional genetic differentiation in S. saevissima has been influenced by hybridization with other nominal species occurring in sympatry or parapatry, including the quite distantly related Solenopsis geminata. The results of this study illustrate the importance of employing different classes of genetic data (coding and noncoding regions and nuclear and mitochondrial DNA [mtDNA] markers), different methods of genetic data analysis (tree-based and non-tree based methods), and different sources of data (genetic, morphological, and ecological data) to explicitly test various operational criteria for species boundaries in clades of recently diverged lineages, while warning against over reliance on any single data type (e.g., mtDNA sequence variation) when drawing inferences.
Related JoVE Video
Characterization of 24 microsatellite markers in 11 species of fire ants in the genus Solenopsis (Hymenoptera: Formicidae).
Mol Ecol Resour
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
The social parasite ant Solenopsis daguerrei infests colonies of several mound-building fire ant species. Twenty-four microsatellite markers were isolated from a repeat-enriched genomic library of S. daguerrei. Eleven loci were polymorphic in this ant with two to six alleles per locus. Expected heterozygosity ranged from 0.0222 to 0.7940 among loci. Most microsatellites amplified successfully across the 11 Solenopsis species tested and will be useful for evolutionary genetic studies in this diverse ant group.
Related JoVE Video
Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis.
BMC Genomics
PUBLISHED: 02-13-2009
Show Abstract
Hide Abstract
Flesh flies in the genus Sarcophaga are important models for investigating endocrinology, diapause, cold hardiness, reproduction, and immunity. Despite the prominence of Sarcophaga flesh flies as models for insect physiology and biochemistry, and in forensic studies, little genomic or transcriptomic data are available for members of this genus. We used massively parallel pyrosequencing on the Roche 454-FLX platform to produce a substantial EST dataset for the flesh fly Sarcophaga crassipalpis. To maximize sequence diversity, we pooled RNA extracted from whole bodies of all life stages and normalized the cDNA pool after reverse transcription.
Related JoVE Video
Twenty-three new microsatellite loci in the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae).
Mol Ecol Resour
PUBLISHED: 01-01-2009
Show Abstract
Hide Abstract
The stable fly, Stomoxys calcitrans (L.), is a significant pest of cattle. Twenty-three microsatellite markers were isolated from a repeat-enriched genomic library of S. calcitrans. We characterized variation at these markers and found that 17 loci were polymorphic in two fly populations from Florida. Two to nine alleles were observed among the variable microsatellite loci and expected heterozygosities ranged from 0.03704 to 0.85115. These markers will be useful for characterizing population genetic differentiation and for tracking the migration patterns of stable flies in the USA and worldwide.
Related JoVE Video
The molecular clockwork of the fire ant Solenopsis invicta.
PLoS ONE
Show Abstract
Hide Abstract
The circadian clock is a core molecular mechanism that allows organisms to anticipate daily environmental changes and adapt the timing of behaviors to maximize efficiency. In social insects, the ability to maintain the appropriate temporal order is thought to improve colony efficiency and fitness. We used the newly sequenced fire ant (Solenopsis invicta) genome to characterize the first ant circadian clock. Our results reveal that the fire ant clock is similar to the clock of the honeybee, a social insect with an independent evolutionary origin of sociality. Gene trees for the eight core clock genes, period, cycle, clock, cryptochrome-m, timeout, vrille, par domain protein 1 & clockwork orange, show ant species grouping closely with honeybees and Nasonia wasps as an outgroup to the social Hymenoptera. Expression patterns for these genes suggest that the ant clock functions similar to the honeybee clock, with period and cry-m mRNA levels increasing during the night and cycle and clockwork orange mRNAs cycling approximately anti-phase to period. Gene models for five of these genes also parallel honeybee models. In particular, the single ant cryptochrome is an ortholog of the mammalian-type (cry-m), rather than Drosophila-like protein (cry-d). Additionally, we find a conserved VPIFAL C-tail region in clockwork orange shared by insects but absent in vertebrates. Overall, our characterization of the ant clock demonstrates that two social insect lineages, ants and bees, share a similar, mammalian-like circadian clock. This study represents the first characterization of clock genes in an ant and is a key step towards understanding socially-regulated plasticity in circadian rhythms by facilitating comparative studies on the organization of circadian clockwork.
Related JoVE Video
Disruption of gene expression in hybrids of the fire ants Solenopsis invicta and Solenopsis richteri.
Mol. Ecol.
Show Abstract
Hide Abstract
Transcriptome analysis is a powerful tool for unveiling the distribution and magnitude of genetic incompatibilities between hybridizing taxa. The nature of such incompatibilities is closely associated with the evolutionary histories of the parental species and may differ across tissues and between the sexes. In eusocial insects, the presence of castes that experience divergent selection regimes may result in additional distinct patterns of caste-specific hybrid incompatibilities. We analysed levels of expression of >14,000 genes in two life stages of each caste in the fire ants Solenopsis invicta and Solenopsis richteri and in their hybrids. We found strong contributions of both developmental stage and caste to gene expression patterns. In contrast, variability in expression was only weakly associated with taxonomic identity, with hybrid scores falling between those of the two parental species. Hybrid incompatibilities were surprisingly modest, with only 32 genes being mis-expressed, indicating low levels of disruption in gene regulation in hybrids; males and workers each mis-expressed at least seven times as many genes as queens. Interestingly, homologues of many of the mis-expressed genes have been implicated in behavioural variation in Drosophila melanogaster. General expression profiles of hybrids consistently were more similar to those of S. richteri than S. invicta, presumably because S. richteri trans-regulatory elements tend to be dominant and/or because there is an overall bias in the genetic composition of the hybrids towards S. richteri. Altogether, our results suggest that selection acting on each caste may contribute differently to interspecific divergence and speciation in this group of ants.
Related JoVE Video
Male reproductive fitness and queen polyandry are linked to variation in the supergene Gp-9 in the fire ant Solenopsis invicta.
Proc. Biol. Sci.
Show Abstract
Hide Abstract
Supergenes are clusters of tightly linked loci maintained in specific allelic combinations to facilitate co-segregation of genes governing adaptive phenotypes. In species where strong selection potentially operates at different levels (e.g. eusocial Hymenoptera), positive selection acting within a population to maintain specific allelic combinations in supergenes may have unexpected consequences for some individuals, including the preservation of disadvantageous traits. The nuclear gene Gp-9 in the invasive fire ant Solenopsis invicta is part of a non-recombining, polymorphic supergene region associated with polymorphism in social organization as well as traits affecting physiology, fecundity and behaviour. We show that both male reproductive success and facultative polyandry in queens have a simple genetic basis and are dependent on male Gp-9 genotype. Gp-9(b) males are unable to maintain exclusive reproductive control over their mates such that queens mated to Gp-9(b) males remain highly receptive to remating. Queens mated to multiple Gp-9(B) males are rare. This difference appears to be independent of mating plug production in fertile males of each Gp-9 genotype. However, Gp-9(b) males have significantly lower sperm counts than Gp-9(B) males, which could be a cue to females to seek additional mates. Despite the reduced fitness of Gp-9(b) males, polygyne worker-induced selective mortality of sexuals lacking b-like alleles coupled with the overall success of the polygyne social form act to maintain the Gp-9(b) allele within nature. Our findings highlight how strong worker-induced selection acting to maintain the Gp-9(b) allele in the polygyne social form may simultaneously result in reduced reproductive fitness for individual sexual offspring.
Related JoVE Video
Molecular and social regulation of worker division of labor in fire ants.
Mol. Ecol.
Show Abstract
Hide Abstract
Reproductive and worker division of labor (DOL) is a hallmark of social insect societies. Despite a long-standing interest in worker DOL, the molecular mechanisms regulating this process have only been investigated in detail in honey bees, and little is known about the regulatory mechanisms operating in other social insects. In the fire ant Solenopsis invicta, one of the most studied ant species, workers are permanently sterile and the tasks performed are modulated by the workers internal state (age and size) and the outside environment (social environment), which potentially includes the effect of the queen presence through chemical communication via pheromones. However the molecular mechanisms underpinning these processes are unknown. Using a whole-genome microarray platform, we characterized the molecular basis for worker DOL and we explored how a drastic change in the social environment (i.e. the sudden loss of the queen) affects global gene expression patterns of worker ants. We identified numerous genes differentially expressed between foraging and non-foraging workers in queenright colonies. With a few exceptions, these genes appear to be distinct from those involved in DOL in bees and wasps. Interestingly, after the queen was removed, foraging workers were no longer distinct from non-foraging workers at the genomic level. Furthermore, few expression differences were detected between queenright and queenless workers when we did not consider the task performed. Thus, the social condition of the colony (queenless vs. queenright) appears to impact the molecular pathways underlying worker task performance, providing strong evidence for social regulation of DOL in S. invicta. This article is protected by copyright. All rights reserved.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.