JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Inhibition of factor-dependent transcription termination in Escherichia coli might relieve xenogene silencing by abrogating H-NS-DNA interactions in vivo.
J. Biosci.
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Many horizontally acquired genes (xenogenes) in the bacterium Escherichia coli are maintained in a silent transcriptional state by the nucleoid-associated transcription regulatory protein H-NS. Recent evidence has shown that antibiotic-mediated inhibition of the transcription terminator protein Rho leads to de-repression of horizontally acquired genes, akin to a deletion of hns. The mechanism behind this similarity in outcomes between the perturbations of two distinct processes remains unclear. Using ChIP-seq of H-NS in wild-type cells, in addition to that in cells treated with bicyclomycin--a specific inhibitor of Rho, we show that bicyclomycin treatment leads to a decrease in binding signal for H-NS to the E. coli chromosome. Rho inhibition leads to RNA polymerase readthrough, which in principle could displace H-NS from the DNA, thus leading to transcriptional derepression of H-NS-silenced genes. Other possible mediators of the effect of Rho on H-NS are discussed. A possible positive feedback between Rho and H-NS might help reinforce xenogene silencing.
Related JoVE Video
Genomic analysis reveals epistatic silencing of "expensive" genes in Escherichia coli K-12.
Mol Biosyst
PUBLISHED: 05-09-2013
Show Abstract
Hide Abstract
A barrier for horizontal gene transfer is high gene expression, which is metabolically expensive. Silencing of horizontally-acquired genes in the bacterium Escherichia coli is caused by the global transcriptional repressor H-NS. The activity of H-NS is enhanced or diminished by other proteins including its homologue StpA, and Hha and YdgT. The interconnections of H-NS with these regulators and their role in silencing gene expression in E. coli are not well understood on a genomic scale. In this study, we use transcriptome sequencing to show that there is a bi-layered gene silencing system - involving the homologous H-NS and StpA - operating on horizontally-acquired genes among others. We show that H-NS-repressed genes belong to two types, termed "epistatic" and "unilateral". In the absence of H-NS, the expression of "epistatically controlled genes" is repressed by StpA, whereas that of "unilaterally controlled genes" is not. Epistatic genes show a higher tendency to be non-essential and recently acquired, when compared to unilateral genes. Epistatic genes reach much higher expression levels than unilateral genes in the absence of the silencing system. Finally, epistatic genes contain more high affinity H-NS binding motifs than unilateral genes. Therefore, both the DNA binding sites of H-NS as well as the function of StpA as a backup system might be selected for silencing highly transcribable genes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.