JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effects of amino acid deletion and substitution on the chemical properties, biological activities of the frog peptide palustrin-OG1.
Protein Pept. Lett.
PUBLISHED: 10-26-2013
Show Abstract
Hide Abstract
Palustrin-OG1 (OG1) is a host defense peptide isolated from the frog Odorrana grahami. In this study, we analyzed the chemical properties, antimicrobial activities and cytotoxicities of OG1 and its derivatives to identify the most promising peptide as an antimicrobial agent. By increasing the net positive charge, amphipathicity and decreasing the mean hydrophobicity of OG1, the derivative named as OG2 exerted higher antimicrobial activity against bacteria but lower cytotoxicity against both porcine erythrocytes and peripheral blood mononuclear cells than did OG1 (P<0.01). After substitution of Cys residues of OG2 by Ala or Trp residues, two derivatives named as OG2A and OG2W were less effective against bacteria and induced greater hemolysis than did OG2, indicating the importance of Cys residues. The substitution of the C-terminal Thr of OG2 resulted OG2N, which decreased the cytotoxicity and improved killing kinetics against gram-positive bacteria by the rapid damage of cell wall and membrane.
Related JoVE Video
Effects of thioredoxin: SUMO and intein on soluble fusion expression of an antimicrobial peptide OG2 in Escherichia coli.
Protein Pept. Lett.
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
OG2 is a modified antimicrobial peptide of Palustrin-OG1 (OG1), which is derived from Odorrana grahami frog. OG2 has shown much higher selective antimicrobial activity and lower hemolytic activity than OG1, indicating OG2 may be a promising antimicrobial agent. In this study, we investigated three fusion partners, including thioredoxin, Mxe GyrA intein, and small ubiquitin-like modifier (SUMO), each fused with OG2, and examined their effects on the expression level and solubility of OG2 in Escherichia coli. The codon-optimized OG2 gene was cloned into pET32a (+) and pTWIN1 for fusion with thioredoxin and Mxe GyrA intein, respectively. In addition, the SUMO-OG2 gene was amplified by splice overlap extension PCR method and was cloned into pET30a (+). All recombinant plasmids were then transformed into E. coli BL21(DE3)pLysS, and the expressed fusion proteins were verified. Upon isopropyl ?-D-1-thiogalactopyranoside (IPTG) induction, OG2 fused with thioredoxin (Trx-OG2) showed the highest yield as a soluble fusion protein (50 mg/L), followed by Mxe GyrA intein (44 mg/L) and SUMO (11 mg/L). The thioredoxin-fused protein (Trx-OG2) was then purified by nickel-nitrilotriacetic acid chromatography and desalted by Sephadex G25. The OG2 released by both tobacco etch virus protease and enterokinase from Trx-OG2 showed strong antimicrobial activity against Staphylococcus aureus ATCC25923.
Related JoVE Video
High-yield soluble expression and simple purification of the antimicrobial peptide OG2 using the intein system in Escherichia coli.
Biomed Res Int
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
OG2 is a modified antimicrobial peptide, that is, derived from the frog peptide Palustrin-OG1. It has high antimicrobial activity and low cytotoxicity, and it is therefore promising as a therapeutic agent. Both prokaryotic (Escherichia coli) and eukaryotic (Pichia pastoris) production host systems were used to produce OG2 in our previous study; however, it was difficult to achieve high expression yields and efficient purification. In this study, we achieved high-yield OG2 expression using the intein fusion system. The optimized OG2 gene was cloned into the pTWIN1 vector to generate pTWIN-OG2-intein2 (C-terminal fusion vector) and pTWIN-intein1-OG2 (N-terminal fusion vector). Nearly 70% of the expressed OG2-intein2 was soluble after the IPTG concentration and induction temperature were decreased, whereas only 42% of the expressed of intein1-OG2 was soluble. Up to 75 mg of OG2-intein2 was obtained from a 1l culture, and 85% of the protein was cleaved by 100 mM DTT. Intein1-OG2 was less amenable to cleavage due to the inhibition of cleavage by the N-terminal amino acid of OG2. The purified OG2 exhibited strong antimicrobial activity against E. coli K88. The intein system is the best currently available system for the cost-effective production of OG2.
Related JoVE Video
Introducing a new bioengineered bug: Methylobacterium extorquens tuned as a microbial bioplastic factory.
Bioeng Bugs
PUBLISHED: 06-04-2011
Show Abstract
Hide Abstract
Discussion on and use of methanol as chemical feedstock and as alternative fuel has gained momentum during the past years. Consequently, microorganism and product design based on methylotrophism is in vogue as reflected by increasing research and development activities in methanol-related areas. A recent example of microorganism and product development is the use of recombinant Methylobacterium extorquens ATCC 55366 strains in the production of second generation biopolyesters. Feeding n-alkenoic acids in addition to methanol yielded functionalized polyhydroxyalkanoates (PHAs) and uncovered how M. extorquens copes with fatty acids. While some parts of the degradation pathway remain unclear, possible metabolic routes are suggested that may explain the significant loss of double bonds prior to polymerization of PHA precursors and occurrence of odd-numbered monomers derived from even-numbered n-alkenoic acids. In addition, microbial discoloration upon fatty acid feeding is discussed and future directions for further genetic modification of M. extorquens are provided. 
Related JoVE Video
Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains.
Microb. Cell Fact.
PUBLISHED: 09-16-2010
Show Abstract
Hide Abstract
Methylotrophic (methanol-utilizing) bacteria offer great potential as cell factories in the production of numerous products from biomass-derived methanol. Bio-methanol is essentially a non-food substrate, an advantage over sugar-utilizing cell factories. Low-value products as well as fine chemicals and advanced materials are envisageable from methanol. For example, several methylotrophic bacteria, including Methylobacterium extorquens, can produce large quantities of the biodegradable polyester polyhydroxybutyric acid (PHB), the best known polyhydroxyalkanoate (PHA). With the purpose of producing second-generation PHAs with increased value, we have explored the feasibility of using M. extorquens for producing functionalized PHAs containing C-C double bonds, thus, making them amenable to future chemical/biochemical modifications for high value applications.
Related JoVE Video
Novel, versatile, and tightly regulated expression system for Escherichia coli strains.
Appl. Environ. Microbiol.
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
A novel tightly regulated gene expression system was developed for Escherichia coli by applying the regulatory elements of the Pseudomonas putida F1 cym and cmt operons to control target gene expression at the transcriptional level by using p-isopropylbenzoate (cumate) as an inducer. This novel expression system, referred to as the cumate gene switch, includes a specific expression vector, pNEW, that contains a partial T5 phage promoter combined with the Pseudomonas-based synthetic operator and the cymR repressor protein-encoding gene designed to express constitutively in the host strain. The induction of transcription relies on the addition of the exogenous inducer (cumate), which is nontoxic to the culture, water soluble, and inexpensive. The characteristics and potential of the expression system were determined. Using flow cytometry and fed-batch fermentations, we have shown that, with the newly developed cumate-regulated system, (i) higher recombinant product yields can be obtained than with the pET (isopropyl-beta-D-thiogalactopyranoside [IPTG])-induced expression system, (ii) expression is tightly regulated, (iii) addition of cumate quickly results in a fully induced and homogenous protein-expressing population in contrast to the bimodal expression profile of an IPTG-induced population, (iv) expression can be modulated by varying the cumate concentration, and (v) the cumate-induced population remains induced and fully expressing even at 8 h following induction, resulting in high yields of the target protein Furthermore, the cumate gene switch described in this article is applicable to a wide range of E. coli strains.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.