JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content.
J. Biol. Chem.
PUBLISHED: 04-14-2014
Show Abstract
Hide Abstract
The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells including soluble guanylate cyclase (sGC). hsp90 associates with the heme-free (apo) sGC-?1 subunit and helps to drive heme insertion during maturation of sGC to its NO-responsive active form. Here, we found that NO caused apo-sGC-?1 to rapidly and transiently dissociate from hsp90 and associate with sGC-?1 in cells. This NO response (i) required that hsp90 be active and that cellular heme be available and be capable of inserting into apo-sGC-?1; (ii) was associated with an increase in sGC-?1 heme content; (iii) could be mimicked by the heme-independent sGC activator BAY 60-2770; and (iv) was followed by desensitization of sGC toward NO, sGC-?1 disassociation, and reassociation with hsp90. Thus, NO promoted a rapid, transient, and hsp90-dependent heme insertion into the apo-sGC-?1 subpopulation in cells, which enabled it to combine with the sGC-?1 subunit to form the mature enzyme. The driving mechanism likely involves conformational changes near the heme site in sGC-?1 that can be mimicked by the pharmacologic sGC activator. Such dynamic interplay between hsp90, apo-sGC-?1, and sGC-?1 in response to NO is unprecedented and represent new steps by which cells can modulate the heme content and activity of sGC for signaling cascades.
Related JoVE Video
Distinct conformational behaviors of four mammalian dual-flavin reductases (cytochrome P450 reductase, methionine synthase reductase, neuronal nitric oxide synthase, endothelial nitric oxide synthase) determine their unique catalytic profiles.
FEBS J.
PUBLISHED: 03-27-2014
Show Abstract
Hide Abstract
Multidomain enzymes often rely on large conformational motions to function. However, the conformational setpoints, rates of domain motions and relationships between these parameters and catalytic activity are not well understood. To address this, we determined and compared the conformational setpoints and the rates of conformational switching between closed unreactive and open reactive states in four mammalian diflavin NADPH oxidoreductases that catalyze important biological electron transfer reactions: cytochrome P450 reductase, methionine synthase reductase and endothelial and neuronal nitric oxide synthase. We used stopped-flow spectroscopy, single turnover methods and a kinetic model that relates electron flux through each enzyme to its conformational setpoint and its rates of conformational switching. The results show that the four flavoproteins, when fully-reduced, have a broad range of conformational setpoints (from 12% to 72% open state) and also vary 100-fold with respect to their rates of conformational switching between unreactive closed and reactive open states (cytochrome P450 reductase > neuronal nitric oxide synthase > methionine synthase reductase > endothelial nitric oxide synthase). Furthermore, simulations of the kinetic model could explain how each flavoprotein can support its given rate of electron flux (cytochrome c reductase activity) based on its unique conformational setpoint and switching rates. The present study is the first to quantify these conformational parameters among the diflavin enzymes and suggests how the parameters might be manipulated to speed or slow biological electron flux.
Related JoVE Video
Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation.
Free Radic. Biol. Med.
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand the underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood cells of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears.
Related JoVE Video
Cotransplantation with myeloid-derived suppressor cells protects cell transplants: a crucial role of inducible nitric oxide synthase.
Transplantation
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
Islet transplantation is an alternative to pancreas transplantation to cure type 1 diabetes, but both require chronic immunosuppression, which is often accompanied by deleterious side effects. The purpose of this study was to explore prolongation of islet allograft survival by cotransplantation with myeloid-derived suppressor cells (MDSCs) without requirement of immunosuppression and determine the role of inducible nitric oxide synthase (iNOS) produced by MDSCs in immune regulation.
Related JoVE Video
A pivotal role for tryptophan 447 in enzymatic coupling of human endothelial nitric oxide synthase (eNOS): effects on tetrahydrobiopterin-dependent catalysis and eNOS dimerization.
J. Biol. Chem.
PUBLISHED: 08-21-2013
Show Abstract
Hide Abstract
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.
Related JoVE Video
Mechanism of inducible nitric-oxide synthase dimerization inhibition by novel pyrimidine imidazoles.
J. Biol. Chem.
PUBLISHED: 05-21-2013
Show Abstract
Hide Abstract
Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases.
Related JoVE Video
Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis.
FEBS J.
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
NO synthase (NOS) enzymes convert L-arginine to NO in two sequential reactions whose rates (k(cat1) and k(cat2)) are both limited by the rate of ferric heme reduction (k(r)). An enzyme ferric heme-NO complex forms as an immediate product complex and then undergoes either dissociation (at a rate that we denote as k(d)) to release NO in a productive manner, or reduction (k(r)) to form a ferrous heme-NO complex that must react with O2 (at a rate that we denote as k(ox)) in a NO dioxygenase reaction that regenerates the ferric enzyme. The interplay of these five kinetic parameters (k(cat1), k(cat2), k(r), k(d) and k(ox)) determines NOS specific activity, O2 concentration response, and pulsatile versus steady-state NO generation. In the present study, we utilized stopped-flow spectroscopy and single catalytic turnover methods to characterize the individual temperature dependencies of the five kinetic parameters of rat neuronal NOS. We then incorporated the measured kinetic values into computer simulations of the neuronal NOS reaction using a global kinetic model to comprehensively model its temperature-dependent catalytic behaviours. The results obtained provide new mechanistic insights and also reveal that the different temperature dependencies of the five kinetic parameters significantly alter neuronal NOS catalytic behaviours and NO release efficiency as a function of temperature.
Related JoVE Video
Tetrahydrobiopterin in nitric oxide synthase.
IUBMB Life
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Nitric oxide synthase (NOS) is a critical enzyme for the production of the messenger molecule nitric oxide (NO) from L-arginine. NOS enzymes require tetrahydrobiopterin as a cofactor for NO synthesis. Besides being one of the few enzymes to use this cofactor, the role of tetrahydrobiopterin in NOS catalytic mechanism is different from other enzymes: during the catalytic cycle of NOS, tetrahydrobiopterin forms a radical species that is again reduced, thus effectively regenerating after each NO synthesis cycle. In this review, we summarize our current knowledge about the role of tetrahydrobiopterin in the structure, function, and catalytic mechanism of NOS enzymes.
Related JoVE Video
Charge-pairing interactions control the conformational setpoint and motions of the FMN domain in neuronal nitric oxide synthase.
Biochem. J.
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
The NOS (nitric oxide synthase; EC 1.14.13.39) enzymes contain a C-terminal flavoprotein domain [NOSred (reductase domain of NOS)] that binds FAD and FMN, and an N-terminal oxygenase domain that binds haem. Evidence suggests that the FMN-binding domain undergoes large conformational motions to shuttle electrons between the NADPH/FAD-binding domain [FNR (ferredoxin NADP-reductase)] and the oxygenase domain. Previously we have shown that three residues on the FMN domain (Glu762, Glu816 and Glu819) that make charge-pairing interactions with the FNR help to slow electron flux through nNOSred (neuronal NOSred). In the present study, we show that charge neutralization or reversal at each of these residues alters the setpoint [Keq(A)] of the NOSred conformational equilibrium to favour the open (FMN-deshielded) conformational state. Moreover, computer simulations of the kinetic traces of cytochrome c reduction by the mutants suggest that they have higher conformational transition rates (1.5-4-fold) and rates of interflavin electron transfer (1.5-2-fold) relative to wild-type nNOSred. We conclude that the three charge-pairing residues on the FMN domain govern electron flux through nNOSred by stabilizing its closed (FMN-shielded) conformational state and by retarding the rate of conformational switching between its open and closed conformations.
Related JoVE Video
A kinetic model linking protein conformational motions, interflavin electron transfer and electron flux through a dual-flavin enzyme-simulating the reductase activity of the endothelial and neuronal nitric oxide synthase flavoprotein domains.
FEBS J.
PUBLISHED: 09-15-2011
Show Abstract
Hide Abstract
NADPH-dependent dual-flavin enzymes provide electrons in many redox reactions, although the mechanism responsible for regulating their electron flux remains unclear. We recently proposed a four-state kinetic model that links the electron flux through a dual-flavin enzyme to its rates of interflavin electron transfer and FMN domain conformational motion [Stuehr DJ et al. (2009) FEBS J276, 3959-3974]. In the present study, we ran computer simulations of the kinetic model to determine whether it could fit the experimentally-determined, pre-steady-state and steady-state traces of electron flux through the neuronal and endothelial NO synthase flavoproteins (reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, respectively) to cytochrome c. We found that the kinetic model accurately fitted the experimental data. The simulations gave estimates for the ensemble rates of interflavin electron transfer and FMN domain conformational motion in the reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, provided the minimum rate boundary values, and predicted the concentrations of the four enzyme species that cycle during catalysis. The findings of the present study suggest that the rates of interflavin electron transfer and FMN domain conformational motion are counterbalanced such that both processes may limit electron flux through the enzymes. Such counterbalancing would allow a robust electron flux at the same time as keeping the rates of interflavin electron transfer and FMN domain conformational motion set at relatively slow levels.
Related JoVE Video
Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase.
J. Biol. Chem.
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg ? NOHA or NOHA ? citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.
Related JoVE Video
Arg375 tunes tetrahydrobiopterin functions and modulates catalysis by inducible nitric oxide synthase.
J. Inorg. Biochem.
PUBLISHED: 07-24-2011
Show Abstract
Hide Abstract
NO synthase enzymes (NOS) support unique single-electron transitions of a bound H(4)B cofactor during catalysis. Previous studies showed that both the pterin structure and surrounding protein residues impact H(4)B redox function during catalysis. A conserved Arg residue (Arg375 in iNOS) forms hydrogen bonds with the H(4)B ring. In order to understand the role of this residue in modulating the function of H(4)B and overall NO synthesis of the enzyme, we generated and characterized three mutants R375D, R375K and R375N of the oxygenase domain of inducible NOS (iNOSoxy). The mutations affected the dimer stability of iNOSoxy and its binding affinity toward substrates and H(4)B to varying degrees. Optical spectra of the ferric, ferrous, ferrous dioxy, ferrous-NO, ferric-NO, and ferrous-CO forms of each mutant were similar to the wild-type. However, mutants displayed somewhat lower heme midpoint potentials and faster ferrous heme-NO complex reactivity with O(2). Unlike the wild-type protein, mutants could not oxidize NOHA to nitrite in a H(2)O(2)-driven reaction. Mutation could potentially change the ferrous dioxy decay rate, H(4)B radical formation rate, and the amount of the Arg hydroxylation during single turnover Arg hydroxylation reaction. All mutants were able to form heterodimers with the iNOS G450A full-length protein and displayed lower NO synthesis activities and uncoupled NADPH consumption. We conclude that the conserved residue Arg375 (1) regulates the tempo and extent of the electron transfer between H(4)B and ferrous dioxy species and (2) controls the reactivity of the heme-based oxidant formed after electron transfer from H(4)B during steady state NO synthesis and H(2)O(2)-driven NOHA oxidation. Thus, Arg375 modulates the redox function of H(4)B and is important in controlling the catalytic function of NOS enzymes.
Related JoVE Video
Spectroscopic, catalytic and binding properties of Bacillus subtilis NO synthase-like protein: comparison with other bacterial and mammalian NO synthases.
J. Inorg. Biochem.
PUBLISHED: 06-18-2011
Show Abstract
Hide Abstract
Genome sequencing has shown the presence of genes coding for NO-synthase (NOS)-like proteins in bacteria. The roles and properties of these proteins remain unclear. UV-visible spectroscopy was used to characterize the recombinant NOS-like protein from Bacillus subtilis (bsNOS) in its ferric and ferrous states in the presence of various Fe(III)- and Fe(II)-heme-ligands and of a series of L-arginine (L-arg) analogs. BsNOS exhibited several spectroscopic and binding properties in common with Bacillus anthracis NOS (baNOS) that were clearly different from those of tetrahydrobiopterin (H4B)-free mammalian NOS oxygenase domains (mNOS(oxys)) and of Staphylococcus aureus NOS (saNOS). Interestingly, bsNOS and baNOS that do not contain H4B exhibited properties much closer to those of H4B-containing mNOS(oxys). Moreover, bsNOS was found to efficiently catalyze the oxidation of L-arginine into L-citrulline by H(2)O(2), whereas H4B-free mNOS(oxys) exhibited low activities for this reaction.
Related JoVE Video
Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process.
FASEB J.
PUBLISHED: 02-25-2011
Show Abstract
Hide Abstract
Maturation of NOS enzymes requires that they incorporate heme to become active, but how this cellular process occurs is unclear. We investigated a role for chaperone heat shock protein 90 (hsp90) in enabling heme insertion into the cytokine-inducible mouse NOS. We used macrophage cell line RAW 264.7 and human embryonic kidney HEK293T cells and studied insertion of native heme during iNOS expression and insertion of exogenous heme into preformed apo-iNOS. Pulldown experiments showed that the hsp90-iNOS complex was present in cells, but the extent of their association was inversely related to iNOS heme content. Hsp90 was primarily associated with apo-iNOS monomer and was associated 11-fold less with heme-containing iNOS monomer or dimer in cells. Kinetic studies showed that hsp90 dissociation occurred coincident with cellular heme insertion into apo-iNOS (0.8 h(-1)). The hsp90 inhibitor radicicol or coexpression of an ATPase-defective hsp90 blocked heme insertion into apo-iNOS by 90 and 75%, respectively. The ATPase activity of hsp90 was not required for complex formation with iNOS but was essential for heme insertion to occur. We conclude that hsp90 plays a primary role in maturation of iNOS protein by interacting with the apoenzyme in cells and then driving heme insertion in an ATP-dependent manner.
Related JoVE Video
Mesohaem substitution reveals how haem electronic properties can influence the kinetic and catalytic parameters of neuronal NO synthase.
Biochem. J.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
NOSs (NO synthases, EC 1.14.13.39) are haem-thiolate enzymes that catalyse a two-step oxidation of L-arginine to generate NO. The structural and electronic features that regulate their NO synthesis activity are incompletely understood. To investigate how haem electronics govern the catalytic properties of NOS, we utilized a bacterial haem transporter protein to overexpress a mesohaem-containing nNOS (neuronal NOS) and characterized the enzyme using a variety of techniques. Mesohaem-nNOS catalysed NO synthesis and retained a coupled NADPH consumption much like the wild-type enzyme. However, mesohaem-nNOS had a decreased rate of Fe(III) haem reduction and had increased rates for haem-dioxy transformation, Fe(III) haem-NO dissociation and Fe(II) haem-NO reaction with O2. These changes are largely related to the 48 mV decrease in haem midpoint potential that we measured for the bound mesohaem cofactor. Mesohaem nNOS displayed a significantly lower Vmax and KmO2 value for its NO synthesis activity compared with wild-type nNOS. Computer simulation showed that these altered catalytic behaviours of mesohaem-nNOS are consistent with the changes in the kinetic parameters. Taken together, the results of the present study reveal that several key kinetic parameters are sensitive to changes in haem electronics in nNOS, and show how these changes combine to alter its catalytic behaviour.
Related JoVE Video
GAPDH regulates cellular heme insertion into inducible nitric oxide synthase.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-04-2010
Show Abstract
Hide Abstract
Heme proteins play essential roles in biology, but little is known about heme transport inside mammalian cells or how heme is inserted into soluble proteins. We recently found that nitric oxide (NO) blocks cells from inserting heme into several proteins, including cytochrome P450s, hemoglobin, NO synthases, and catalase. This finding led us to explore the basis for NO inhibition and to identify cytosolic proteins that may be involved, using inducible NO synthase (iNOS) as a model target. Surprisingly, we found that GAPDH plays a key role. GAPDH was associated with iNOS in cells. Pure GAPDH bound tightly to heme or to iNOS in an NO-sensitive manner. GAPDH knockdown inhibited heme insertion into iNOS and a GAPDH mutant with defective heme binding acted as a dominant negative inhibitor of iNOS heme insertion. Exposing cells to NO either from a chemical donor or by iNOS induction caused GAPDH to become S-nitrosylated at Cys152. Expressing a GAPDH C152S mutant in cells or providing a drug to selectively block GAPDH S-nitrosylation both made heme insertion into iNOS resistant to the NO inhibition. We propose that GAPDH delivers heme to iNOS through a process that is regulated by its S-nitrosylation. Our findings may uncover a fundamental step in intracellular heme trafficking, and reveal a mechanism whereby NO can govern the process.
Related JoVE Video
NO synthase isoforms specifically modify peroxynitrite reactivity.
FEBS J.
PUBLISHED: 09-02-2010
Show Abstract
Hide Abstract
Nitric oxide synthases (NOSs) are multi-domain hemothiolate proteins that are the sole source of nitric oxide (NO) in mammals. NOSs can also be a source or a sink for peroxynitrite (PN), an oxidant that is suspected to be involved in numerous physiopathological processes. In a previous study, we showed that the oxygenase domain of the inducible NOS (iNOSoxy) reacts with PN and changes its oxidative reactivity [Maréchal A, Mattioli TA, Stuehr DJ & Santolini J (2007) J Biol Chem 282, 14101-14112]. Here we report a similar analysis on two other NOS isoforms, neuronal NOS (nNOS) and a bacterial NOS-like protein (bsNOS). All NOSs accelerated PN decomposition, with accumulation of a similar heme intermediate. The kinetics of PN decomposition and heme transitions were comparable among NOSs. However, their effects on PN reactivity differ greatly. All isoforms suppressed PN two-electron oxidative activity, but iNOSoxy enhanced PN one-electron oxidation and nitration potencies, the oxygenase domain of nNOS (nNOSoxy) affected them minimally, and bsNOS abolished all PN reactivities. This led to the loss of both NOS and PN decomposition activities for nNOSoxy and iNOSoxy, which may be linked to the reported alterations in their electronic absorption spectra. Bacterial bsNOS was affected to a lesser extent by reaction with PN. We propose that these differences in PN reactivity among NOSs might arise from subtle differences in their heme pockets, and could reflect the physiological specificity of each NOS isoform, ranging from oxidative stress amplification (iNOS) to detoxification (bsNOS).
Related JoVE Video
Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase.
J. Biol. Chem.
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
The nitric-oxide synthases (NOS, EC 1.14.13.39) are modular enzymes containing attached flavoprotein and heme (NOSoxy) domains. To generate nitric oxide (NO), the NOS FMN subdomain must interact with the NOSoxy domain to deliver electrons to the heme for O(2) activation during catalysis. The molecular basis and how the interaction is regulated is unclear. We explored the role of eight positively charged residues that create an electropositive patch on NOSoxy in enabling the electron transfer by incorporating mutations that neutralized or reversed their individual charges. Stopped-flow and steady-state experiments revealed that individual charges at Lys(423), Lys(620), and Lys(660) were the most important in enabling heme reduction in nNOS. Charge reversal was more disruptive than neutralization in all cases, and the effects on heme reduction were not due to a weakening in the thermodynamic driving force for heme reduction. Mutant NO synthesis activities displayed a complex pattern that could be simulated by a global model for NOS catalysis. This analysis revealed that the mutations impact the NO synthesis activity only through their effects on heme reduction rates. We conclude that heme reduction and NO synthesis in nNOS is enabled by electrostatic interactions involving Lys(423), Lys(620), and Lys(660), which form a triad of positive charges on the NOSoxy surface. A simulated docking study reveals how electrostatic interactions of this triad can enable an FMN-NOSoxy interaction that is productive for electron transfer.
Related JoVE Video
A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism.
J. Biol. Chem.
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
Calmodulin (CaM) activates the nitric-oxide synthases (NOS) by a mechanism that is not completely understood. A recent crystal structure showed that bound CaM engages in a bridging interaction with the NOS FMN subdomain. We investigated its importance in neuronal NOS (nNOS) by mutating the two residues that primarily create the bridging interaction (Arg(752) in the FMN subdomain and Glu(47) in CaM). Mutations designed to completely destroy the bridging interaction prevented bound CaM from increasing electron flux through the FMN subdomain and diminished the FMN-to-heme electron transfer by 90%, whereas mutations that partly preserve the interaction had intermediate effects. The bridging interaction appeared to control FMN subdomain interactions with both its electron donor (NADPH-FAD subdomain) and electron acceptor (heme domain) partner subdomains in nNOS. We conclude that the Arg(752)-Glu(47) bridging interaction is the main feature that enables CaM to activate nNOS. The mechanism is bi-modal and links a single structural aspect of CaM binding to specific changes in nNOS protein conformational and electron transfer properties that are essential for catalysis.
Related JoVE Video
Conformational States and kinetics of the calcium binding domain of NADPH oxidase 5.
Open Biochem J
PUBLISHED: 02-01-2010
Show Abstract
Hide Abstract
Superoxide generated by human NADPH oxidase 5 (NOX5) is of growing importance for various physiological and pathological processes. The activity of NOX5 appears to be regulated by a self-contained Ca(2+) binding domain (CaBD). Recently Bánfi et al. suggest that the conformational change of CaBD upon Ca(2+) binding is essential for domain-domain interaction and superoxide production. The authors studied its structural change using intrinsic Trp fluorescence and hydrophobic dye binding; however, their conformational study was not thorough and the kinetics of metal binding was not demonstrated. Here we generated the recombinant CaBD and an E99Q/E143Q mutant to characterize them using fluorescence spectroscopy. Ca(2+) binding to CaBD induces a conformational change that exposes hydrophobic patches and increases the quenching accessibilities of its Trp residues and AEDANS at Cys107. The circular dichroism spectra indicated no significant changes in the secondary structures of CaBD upon metal binding. Stopped-flow spectrometry revealed a fast Ca(2+) dissociation from the N-terminal half, followed by a slow Ca(2+) dissociation from the C-terminal half. Combined with a chemical stability study, we concluded that the C-terminal half of CaBD has a higher Ca(2+) binding affinity, a higher chemical stability, and a slow Ca(2+) dissociation. The Mg(2+)-bound CaBD was also investigated and the results indicate that its structure is similar to the apo form. The rate of Mg(2+) dissociation was close to that of Ca(2+) dissociation. Our data suggest that the N- and C-terminal halves of CaBD are not completely structurally independent.
Related JoVE Video
Nitric oxide blocks cellular heme insertion into a broad range of heme proteins.
Free Radic. Biol. Med.
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Although the insertion of heme into proteins enables their function in bioenergetics, metabolism, and signaling, the mechanisms and regulation of this process are not fully understood. We developed a means to study cellular heme insertion into apo-protein targets over a 3-h period and then investigated how nitric oxide (NO) released from a chemical donor (NOC-18) might influence heme (protoporphyrin IX) insertion into seven targets that present a range of protein structures, heme ligation states, and functions (three NO synthases, two cytochrome P450s, catalase, and hemoglobin). NO blocked cellular heme insertion into all seven apo-protein targets. The inhibition occurred at relatively low (nM/min) fluxes of NO, was reversible, and did not involve changes in intracellular heme levels, activation of guanylate cyclase, or inhibition of mitochondrial ATP production. These aspects and the range of protein targets suggest that NO can act as a global inhibitor of heme insertion, possibly by inhibiting a common step in the process.
Related JoVE Video
Role of arginine guanidinium moiety in nitric-oxide synthase mechanism of oxygen activation.
J. Biol. Chem.
PUBLISHED: 11-30-2009
Show Abstract
Hide Abstract
Nitric-oxide synthases (NOS) are highly regulated heme-thiolate enzymes that catalyze two oxidation reactions that sequentially convert the substrate L-Arg first to N(omega)-hydroxyl-L-arginine and then to L-citrulline and nitric oxide. Despite numerous investigations, the detailed molecular mechanism of NOS remains elusive and debatable. Much of the dispute in the various proposed mechanisms resides in the uncertainty concerning the number and sources of proton transfers. Although specific protonation events are key features in determining the specificity and efficiency of the two catalytic steps, little is known about the role and properties of protons from the substrate, cofactors, and H-bond network in the vicinity of the heme active site. In this study, we have investigated the role of the acidic proton from the L-Arg guanidinium moiety on the stability and reactivity of the ferrous heme-oxy complex intermediate by exploiting a series of L-Arg analogues exhibiting a wide range of guanidinium pK(a) values. Using electrochemical and vibrational spectroscopic techniques, we have analyzed the effects of the analogues on the heme, including characteristics of its proximal ligand, heme conformation, redox potential, and electrostatic properties of its distal environment. Our results indicate that the substrate guanidinium pK(a) value significantly affects the H-bond network near the heme distal pocket. Our results lead us to propose a new structural model where the properties of the guanidinium moiety finely control the proton transfer events in NOS and tune its oxidative chemistry. This model may account for the discrepancies found in previously proposed mechanisms of NOS oxidation processes.
Related JoVE Video
Lys842 in neuronal nitric-oxide synthase enables the autoinhibitory insert to antagonize calmodulin binding, increase FMN shielding, and suppress interflavin electron transfer.
J. Biol. Chem.
PUBLISHED: 11-30-2009
Show Abstract
Hide Abstract
Neuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys(842)) lies within a putative CaM binding helix in the middle of the AI. We investigated its role by substituting residues that neutralize (Ala) or reverse (Glu) the charge at Lys(842). Compared with wild type nNOS, the mutant enzymes had greater cytochrome c reductase and NADPH oxidase activities in the CaM-free state, were able to bind CaM at lower calcium concentration, and had lower rates of heme reduction and NO synthesis in one case (K842A). Moreover, stopped-flow spectrophotometric experiments with the nNOS reductase domain indicate that the CaM-free mutants had faster flavin reduction kinetics and had less shielding of their FMN subdomains compared with wild type and no longer increased their level of FMN shielding in response to NADPH binding. Thus, Lys(842) is critical for the known functions of the AI and also enables two additional functions of the AI as newly identified here: suppression of electron transfer to FMN and control of the conformational equilibrium of the nNOS reductase domain. Its effect on the conformational equilibrium probably explains suppression of catalysis by the AI.
Related JoVE Video
Fast ferrous heme-NO oxidation in nitric oxide synthases.
FEBS J.
PUBLISHED: 08-20-2009
Show Abstract
Hide Abstract
During catalysis, the heme in nitric oxide synthase (NOS) binds NO before releasing it to the environment. Oxidation of the NOS ferrous heme-NO complex by O2 is key for catalytic cycling, but the mechanism is unclear. We utilized stopped-flow methods to study the reaction of O2 with ferrous heme-NO complexes of inducible and neuronal NOS enzymes. We found that the reaction does not involve heme-NO dissociation, but instead proceeds by a rapid direct reaction of O2 with the ferrous heme-NO complex. This behavior is novel and may distinguish heme-thiolate enzymes, such as NOS, from related heme proteins.
Related JoVE Video
Characterization of the proximal ligand in the P420 form of inducible nitric oxide synthase.
J. Am. Chem. Soc.
PUBLISHED: 08-08-2009
Show Abstract
Hide Abstract
The nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) up-regulates the expression of heme oxygenase (HO), which in turn produces carbon monoxide (CO) that down-regulates iNOS activity by reducing its expression level or by inhibiting its activity by converting it to an inactive P420 form (iNOS(P420)). Accordingly, CO has been considered as a potentially important attenuator of inflammation. Despite its importance, the nature of the proximal heme ligand of the iNOS(P420) species remains elusive. Here we show that the 221 cm(-1) mode of the photoproduct of iNOS(P420) does not exhibit any H(2)O-D(2)O solvent isotope shift such as that found in the iron-histidine stretching mode of myoglobin, indicating that the proximal ligand of iNOS(P420) is not a histidine. The nu(Fe-CO) and nu(C-O) data reveal that the proximal heme ligand of iNOS(P420) is consistent with a protonated thiol instead of a thiolate anion. Furthermore, the optical absorption properties of iNOS(P420) are similar to those of a neutral thiol-heme model complex but not myoglobin. Together the data support the scenario that iNOS(P420) is inactivated by protonation of the native proximal thiolate ligand to a neutral thiol, instead of by ligand switching to a histidine, as prior studies have suggested.
Related JoVE Video
Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain.
FEBS J.
PUBLISHED: 07-03-2009
Show Abstract
Hide Abstract
Nitric oxide synthases belong to a family of dual-flavin enzymes that transfer electrons from NAD(P)H to a variety of heme protein acceptors. During catalysis, their FMN subdomain plays a central role by acting as both an electron acceptor (receiving electrons from FAD) and an electron donor, and is thought to undergo large conformational movements and engage in two distinct protein-protein interactions in the process. This minireview summarizes what we know about the many factors regulating nitric oxide synthase flavoprotein domain function, primarily from the viewpoint of how they impact electron input/output and conformational behaviors of the FMN subdomain.
Related JoVE Video
How does a valine residue that modulates heme-NO binding kinetics in inducible NO synthase regulate enzyme catalysis?
J. Inorg. Biochem.
PUBLISHED: 06-30-2009
Show Abstract
Hide Abstract
Nitric oxide (NO) release from nitric oxide synthases (NOSs) depends on the dissociation of a ferric heme-NO product complex (Fe(III)NO) that forms immediately after NO is made in the heme pocket. The NOS-like enzyme of Bacillus subtilis (bsNOS) has 10-20 fold slower Fe(III)NO dissociation rate (k(d)) and NO association rate (k(on)) compared to mammalian NOS counterparts. We previously showed that an Ile for Val substitution at the opening of the heme pocket in bsNOS contributes to these differences. The complementary mutation in mouse inducible NOS oxygenase domain (Val346Ile) decreased the NO k(on) and k(d) by 8 and 3-fold, respectively, compared to wild-type iNOSoxy, and also slowed the reductive processing of the heme-O(2) catalytic intermediate. To investigate how these changes affect steady-state catalytic behaviors, we generated and characterized the V346I mutant of full-length inducible NOS (iNOS). The mutant exhibited a 4-5 fold lower NO synthesis activity, an apparent uncoupled NADPH consumption, and formation of a heme-NO complex during catalysis that was no longer sensitive to solution NO scavenging. We found that these altered catalytic behaviors were not due to changes in the heme reduction rate or in the stability of the enzyme heme-O(2) intermediate, but instead were due to the slower NO k(on) and k(d) and a slower oxidation rate of the enzyme ferrous heme-NO complex. Computer simulations that utilized the measured kinetic values confirmed this interpretation, and revealed that the V346I iNOS has an enhanced NADPH-dependent NO dioxygenase activity that converts almost 1 NO to nitrate for every NO that the enzyme releases into solution. Together, our results highlight the importance of heme pocket geometry in tuning the NO release versus NO dioxygenase activities of iNOS.
Related JoVE Video
Neutralizing a surface charge on the FMN subdomain increases the activity of neuronal nitric-oxide synthase by enhancing the oxygen reactivity of the enzyme heme-nitric oxide complex.
J. Biol. Chem.
PUBLISHED: 05-27-2009
Show Abstract
Hide Abstract
Nitric-oxide synthases (NOSs) are calmodulin-dependent flavoheme enzymes that oxidize l-Arg to nitric oxide (NO) and l-citrulline. Their catalytic behaviors are complex and are determined by their rates of heme reduction (k(r)), ferric heme-NO dissociation (k(d)), and ferrous heme-NO oxidation (k(ox)). We found that point mutation (E762N) of a conserved residue on the enzymes FMN subdomain caused the NO synthesis activity to double compared with wild type nNOS. However, in the absence of l-Arg, NADPH oxidation rates suggested that electron flux through the heme was slower in E762N nNOS, and this correlated with the mutant having a 60% slower k(r). During NO synthesis, little heme-NO complex accumulated in the mutant, compared with approximately 50-70% of the wild-type nNOS accumulating as this complex. This suggested that the E762N nNOS is hyperactive because it minimizes buildup of an inactive ferrous heme-NO complex during NO synthesis. Indeed, we found that k(ox) was 2 times faster in the E762N mutant than in wild-type nNOS. The mutational effect on k(ox) was independent of calmodulin. Computer simulation and experimental measures both indicated that the slower k(r) and faster k(ox) of E762N nNOS combine to lower its apparent K(m,O(2)) for NO synthesis by at least 5-fold, which in turn increases its V/K(m) value and enables it to be hyperactive in steady-state NO synthesis. Our work underscores how sensitive nNOS activity is to changes in the k(ox) and reveals a novel means for the FMN module or protein-protein interactions to alter nNOS activity.
Related JoVE Video
Glucose-modulated tyrosine nitration in beta cells: targets and consequences.
Arch. Biochem. Biophys.
PUBLISHED: 04-30-2009
Show Abstract
Hide Abstract
Hyperglycemia, key factor of the pre-diabetic and diabetic pathology, is associated with cellular oxidative stress that promotes oxidative protein modifications. We report that protein nitration is responsive to changes in glucose concentrations in islets of Langerhans and insulinoma beta cells. Alterations in the extent of tyrosine nitration as well as the cellular nitroproteome profile correlated tightly with changing glucose concentrations. The target proteins we identified function in protein folding, energy metabolism, antioxidant capacity, and membrane permeability. Nitration of heat shock protein 60 in vitro was found to decrease its ATP hydrolysis and interaction with proinsulin, suggesting a mechanism by which protein nitration could diminish insulin secretion. This was supported by our finding of a decrease in stimulated insulin secretion following glycolytic stress in cultured cells. Our results reveal that protein tyrosine nitration may be a previously unrecognized factor in beta-cell dysfunction and the pathogenesis of diabetes.
Related JoVE Video
Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase.
Biochemistry
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
Nitric oxide synthases (NOS) are modular, calmodulin- (CaM-) dependent, flavoheme enzymes that catalyze oxidation of l-arginine to generate nitric oxide (NO) and citrulline. During catalysis, the FMN subdomain cycles between interaction with an NADPH-FAD subdomain to receive electrons and interaction with an oxygenase domain to deliver electrons to the NOS heme. This process can be described by a three-state, two-equilibrium model for the conformation of the FMN subdomain, in which it exists in two distinct bound states (FMN-shielded) and one common unbound state (FMN-deshielded). We studied how each partner subdomain, the FMN redox state, and CaM binding may regulate the conformational equilibria of the FMN module in rat neuronal NOS (nNOS). We utilized four nNOS protein constructs of different subdomain composition, including the isolated FMN subdomain, and determined changes in the conformational state by measuring the degree of FMN shielding by fluorescence, electron paramagnetic resonance, or stopped-flow spectroscopic techniques. Our results suggest the following: (i) The NADPH-FAD subdomain has a far greater capacity to interact with the FMN subdomain than does the oxygenase domain. (ii) CaM binding has no direct effects on the FMN subdomain. (iii) CaM destabilizes interaction of the FMN subdomain with the NADPH-FAD subdomain but does not measurably increase its interaction with the oxygenase domain. Our results imply that a different set point and CaM regulation exists for either conformational equilibrium of the FMN subdomain. This helps to explain the unique electron transfer and catalytic behaviors of nNOS, relative to other dual-flavin enzymes.
Related JoVE Video
Role of substrate functional groups in binding to nitric oxide synthase.
Biochem. Biophys. Res. Commun.
PUBLISHED: 02-04-2009
Show Abstract
Hide Abstract
The interactions between the heme CO ligand in the oxygenase domain of nitric oxide synthase and a set of substrate analogues were determined by measuring the resonance Raman spectra of the Fe-C-O vibrational modes. Substrates were selected that have variations in all the functional units: the guanidino group, the amino acid site and the number of methylene units connecting the two ends. In comparison to the substrate free form of the enzyme, Interactions of the analogues with the CO moiety caused the Fe-CO stretching and the Fe-C-O bending modes to shift in frequency due to the electrostatic environment. An unmodified guanidino group interacted with the CO in a similar fashion despite changes in the amino acid end. However, an unmodified amino acid end is required for catalysis owing to the H-bonding network involving the substrate, the heme and the pterin cofactor.
Related JoVE Video
Glucose-mediated tyrosine nitration in adipocytes: targets and consequences.
Free Radic. Biol. Med.
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
Hyperglycemia, a key factor in insulin resistance and diabetic pathology, is associated with cellular oxidative stress that promotes oxidative protein modifications. We report that protein nitration is responsive to changes in glucose concentrations in 3T3-L1 adipocytes. Alterations in the extent of tyrosine nitration as well as the cellular nitroproteome profile correlated tightly with changing glucose concentrations. The target proteins we identified are involved in fatty acid binding, cell signaling, protein folding, energy metabolism, antioxidant capacity, and membrane permeability. The nitration of adipocyte fatty acid binding protein (FABP4) at Tyr19 decreases, similar to phosphorylation, the binding of palmitic acid to the fatty acid-free protein. This potentially alters intracellular fatty acid transport, nuclear translocation of FABP4, and agonism of PPAR gamma. Our results suggest that protein tyrosine nitration may be a factor in obesity, insulin resistance, and the pathogenesis of diabetes.
Related JoVE Video
Function of mitochondrial Stat3 in cellular respiration.
Science
PUBLISHED: 01-08-2009
Show Abstract
Hide Abstract
Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3(-/-) cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased. We identified Stat3 mutants that selectively restored the proteins function as a transcription factor or its functions within the ETC. In mice that do not express Stat3 in the heart, there were also selective defects in the activities of complexes I and II of the ETC. These data indicate that Stat3 is required for optimal function of the ETC, which may allow it to orchestrate responses to cellular homeostasis.
Related JoVE Video
Catalytic intermediates of inducible nitric-oxide synthase stabilized by the W188H mutation.
J. Biol. Chem.
Show Abstract
Hide Abstract
Nitric-oxide synthase (NOS) catalyzes nitric oxide (NO) synthesis via a two-step process: L-arginine (L-Arg) ? N-hydroxy-L-arginine ? citrulline + NO. In the active site the heme is coordinated by a thiolate ligand, which accepts a H-bond from a nearby tryptophan residue, Trp-188. Mutation of Trp-188 to histidine in murine inducible NOS was shown to retard NO synthesis and allow for transient accumulation of a new intermediate with a Soret maximum at 420 nm during the L-Arg hydroxylation reaction (Tejero, J., Biswas, A., Wang, Z. Q., Page, R. C., Haque, M. M., Hemann, C., Zweier, J. L., Misra, S., and Stuehr, D. J. (2008) J. Biol. Chem. 283, 33498-33507). However, crystallographic data showed that the mutation did not perturb the overall structure of the enzyme. To understand how the proximal mutation affects the oxygen chemistry, we carried out biophysical studies of the W188H mutant. Our stopped-flow data showed that the 420-nm intermediate was not only populated during the L-Arg reaction but also during the N-hydroxy-L-arginine reaction. Spectroscopic data and structural analysis demonstrated that the 420-nm intermediate is a hydroxide-bound ferric heme species that is stabilized by an out-of-plane distortion of the heme macrocycle and a cation radical centered on the tetrahydrobiopterin cofactor. The current data add important new insights into the previously proposed catalytic mechanism of NOS (Li, D., Kabir, M., Stuehr, D. J., Rousseau, D. L., and Yeh, S. R. (2007) J. Am. Chem. Soc. 129, 6943-6951).
Related JoVE Video
Ascorbate in aqueous humor augments nitric oxide production by macrophages.
J. Immunol.
Show Abstract
Hide Abstract
Immunosuppressive molecules within the aqueous humor (AqH) are thought to preserve ocular immune privilege by inhibiting proinflammatory NO production by macrophages (M?s). Consistent with previous observations, we observed that although M?s stimulated in the presence of AqH expressed NO synthase 2 (NOS2) protein, nitrite concentrations in culture supernatants, an indirect measure of NO production, did not increase. Interestingly, NOS2 enzymatic activity, as measured by the conversion of L-arginine (L-Arg) into L-citrulline, was augmented in lysates of M?s stimulated in the presence of AqH. These data suggested that intracellular L-Arg may have been limited by AqH. However, we observed increased mRNA expression of the L-Arg transporter, cationic amino acid transporter 2B, and increased L-Arg uptake in M?s stimulated in the presence of AqH. Arginases were expressed by stimulated Ms, but competition for L-Arg with NOS2 was excluded. Expression of GTP cyclohydrolase, which produces tetrahydrobiopterin (H(4)B), an essential cofactor for NOS2 homodimerization, increased after M stimulation in the presence or absence of AqH and NOS2 homodimers formed. Taken together, these data provided no evidence for inhibited NOS2 enzymatic activity by AqH, suggesting that a factor within AqH may have interfered with the measurement of nitrite. Indeed, we observed that nitrite standards were not measurable in the presence of AqH, and this effect was due to ascorbate in AqH. Controlling for interference by ascorbate revealed that AqH augmented NO production in M?s via ascorbate, which limited degradation of H(4)B. Therefore, AqH may augment NO production in macrophages by stabilizing H(4)B and increasing intracellular L-Arg.
Related JoVE Video
Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.
Biochemistry
Show Abstract
Hide Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of ?-aminolevulinic acid. Our finding of heme binding to GAPDH expands the proteins potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.
Related JoVE Video
Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the NO-active enzyme.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Heme insertion is key during maturation of soluble guanylyl cyclase (sGC) because it enables sGC to recognize NO and transduce its multiple biological effects. Although sGC is often associated with the 90-kDa heat shock protein (hsp90) in cells, the implications are unclear. The present study reveals that hsp90 is required to drive heme insertion into sGC and complete its maturation. We used a mammalian cell culture approach and followed heme insertion into transiently and endogenously expressed heme-free sGC. We used pharmacological hsp90 inhibitors, an ATP-ase inactive hsp90 mutant, and heme-dependent or heme-independent sGC activators as tools to decipher the role of hsp90. Our findings suggest that hsp90 complexes with apo-sGC, drives heme insertion through its inherent ATPase activity, and then dissociates from the mature, heme-replete sGC. Together, this improves our understanding of sGC maturation and reveals a unique means to control sGC activity in cells, and it has important implications for hsp90 inhibitor-based cancer therapy.
Related JoVE Video
Protection of extraribosomal RPL13a by GAPDH and dysregulation by S-nitrosylation.
Mol. Cell
Show Abstract
Hide Abstract
Multiple eukaryotic ribosomal proteins (RPs) are co-opted for extraribosomal "moonlighting" activities, but paradoxically, RPs exhibit rapid turnover when not ribosome-bound. In one illustrative case of a functional extraribosomal RP, interferon (IFN)-? induces ribosome release of L13a and assembly into the IFN-gamma-activated inhibitor of translation (GAIT) complex for translational control of a subset of inflammation-related proteins. Here we show GAPDH functions as a chaperone, shielding newly released L13a from proteasomal degradation. However, GAPDH protective activity is lost following cell treatment with oxidatively modified low density lipoprotein and IFN-?. These agonists stimulate S-nitrosylation at Cys(247) of GAPDH, which fails to interact with L13a, causing proteasomal degradation of essentially the entire cell complement of L13a and defective translational control. Evolution of extraribosomal RP activities might require coevolution of protective chaperones, and pathological disruption of either protein, or their interaction, presents an alternative mechanism of diseases due to RP defects, and targets for therapeutic intervention.
Related JoVE Video
Control of electron transfer and catalysis in neuronal nitric-oxide synthase (nNOS) by a hinge connecting its FMN and FAD-NADPH domains.
J. Biol. Chem.
Show Abstract
Hide Abstract
In nitric-oxide synthases (NOSs), two flexible hinges connect the FMN domain to the rest of the enzyme and may guide its interactions with partner domains for electron transfer and catalysis. We investigated the role of the FMN-FAD/NADPH hinge in rat neuronal NOS (nNOS) by constructing mutants that either shortened or lengthened this hinge by 2, 4, and 6 residues. Shortening the hinge progressively inhibited electron flux through the calmodulin (CaM)-free and CaM-bound nNOS to cytochrome c, whereas hinge lengthening relieved repression of electron flux in CaM-free nNOS and had no impact or slowed electron flux through CaM-bound nNOS to cytochrome c. How hinge length influenced heme reduction depended on whether enzyme flavins were pre-reduced with NADPH prior to triggering heme reduction. Without pre-reduction, changing the hinge length was deleterious; with pre-reduction, the hinge shortening was deleterious, and hinge lengthening increased heme reduction rates beyond wild type. Flavin fluorescence and stopped-flow kinetic studies on CaM-bound enzymes suggested hinge lengthening slowed the domain-domain interaction needed for FMN reduction. All hinge length changes lowered NO synthesis activity and increased uncoupled NADPH consumption. We conclude that several aspects of catalysis are sensitive to FMN-FAD/NADPH hinge length and that the native hinge allows a best compromise among the FMN domain interactions and associated electron transfer events to maximize NO synthesis and minimize uncoupled NADPH consumption.
Related JoVE Video
Characterization of the 1st and 2nd EF-hands of NADPH oxidase 5 by fluorescence, isothermal titration calorimetry, and circular dichroism.
Chem Cent J
Show Abstract
Hide Abstract
Superoxide generated by non-phagocytic NADPH oxidases (NOXs) is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD) of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD) and its calcium-binding knockout mutants.
Related JoVE Video
Thioredoxin-1 regulates cellular heme insertion by controlling S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase.
J. Biol. Chem.
Show Abstract
Hide Abstract
NO generated by inducible NOS (iNOS) causes buildup of S-nitrosated GAPDH (SNO-GAPDH) in cells, which then inhibits further iNOS maturation by limiting the heme insertion step (Chakravarti, R., Aulak, K. S., Fox, P. L., and Stuehr, D. J. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009). We investigated what regulates this process utilizing a slow-release NO donor (NOC-18) and studying changes in cellular SNO-GAPDH levels during and after NO exposure. Culturing macrophage-like cells with NOC-18 during cytokine activation caused buildup of heme-free (apo) iNOS and SNO-GAPDH. Upon NOC-18 removal, the cells quickly recovered their heme insertion capacity in association with rapid SNO-GAPDH denitrosation, implying that these processes are linked. We then altered cell expression of thioredoxin-1 (Trx1) or S-nitrosoglutathione reductase, both of which can function as a protein denitrosylase. Trx1 knockdown increased SNO-GAPDH levels in cells, made heme insertion hypersensitive to NO, and increased the recovery time, whereas Trx1 overexpression greatly diminished SNO-GAPDH buildup and protected heme insertion from NO inhibition. In contrast, knockdown of S-nitrosoglutathione reductase expression had little effect on these parameters. Experiments utilizing C152S GAPDH confirmed that the NO effects are all linked to S-nitrosation of GAPDH at Cys-152. We conclude (i) that NO inhibition of heme insertion and its recovery can be rapid and dynamic processes and are inversely linked to the S-nitrosation of GAPDH and (ii) that the NO sensitivity of heme insertion can vary depending on the Trx1 expression level due to Trx1 acting as an SNO-GAPDH denitrosylase. Together, our results identify a new way that cells regulate heme protein maturation during inflammation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.