JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.
New Phytol.
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling.
Related JoVE Video
Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.
J Zhejiang Univ Sci B
PUBLISHED: 04-04-2013
Show Abstract
Hide Abstract
The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.
Related JoVE Video
Changes in antioxidant activity during the ripening of jujube (Ziziphus mauritiana Lamk).
Food Chem
PUBLISHED: 03-06-2013
Show Abstract
Hide Abstract
Phenolic compounds from jujube fruits and related antioxidant activities were investigated during the ripening stages. Three different antioxidant assays, including ORAC, FRAP and DPPH, were monitored on crude jujube extract (CJE). Jujube fruits were additionally fractionated into three selective fractions F1, F2, and F3. However, only the FRAP assay gave the relative antioxidant activity for the three fractions. Furthermore, HPLC-ESI-MSMS (Q-Tof) and GC-MS were used to identify the compounds in each purified fraction. Using FRAP, F1 mainly composed of lipids, exhibited the lowest antioxidant activity (?0.080±0.015mmol trolox/100g, p<0.05). F2, rich in flavanols and flavonols, displayed 50-fold higher activity (4.27±0.11mmol trolox/100g). Remarkably, F3 with an elevated content of condensed tannins (polymeric proanthodelphinidins), exhibited the highest antioxidant activity (25.4±0.35mmol trolox/100g). The presented results showed that the phenolic profiles of the fruits were influenced by their developmental stage. Furthermore, during ripening, the antioxidant activity may be more impacted by the flavanols and condensed tannins. The purified condensed tannins of jujube fruits may be used as natural antioxidant extracts.
Related JoVE Video
Sensory characterisation enabled the first classification of dessert bananas.
J. Sci. Food Agric.
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
Knowledge of the sensory diversity of a wide range of dessert bananas would be helpful in breeding programmes and so diversify the banana market. Descriptive sensory profiling was thus used to assess 13 cultivated bananas and four new triploid hybrids at an eating stage.
Related JoVE Video
Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana).
BMC Plant Biol.
PUBLISHED: 07-16-2010
Show Abstract
Hide Abstract
Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW).
Related JoVE Video
A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas.
BMC Plant Biol.
PUBLISHED: 04-13-2010
Show Abstract
Hide Abstract
The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents.
Related JoVE Video
Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop.
AoB Plants
Show Abstract
Hide Abstract
Banana finger drop is defined as dislodgement of individual fruits from the hand at the pedicel rupture area. For some banana varieties, this is a major feature of the ripening process, in addition to ethylene production and sugar metabolism. The few studies devoted to assessing the physiological and molecular basis of this process revealed (i) the similarity between this process and softening, (ii) the early onset of related molecular events, between the first and fourth day after ripening induction, and (iii) the putative involvement of ethylene as a regulatory factor. This study was conducted with the aim of identifying, through a candidate gene approach, a quality-related marker that could be used as a tool in breeding programmes. Here we examined the relationship between ripening ethylene biosynthesis (EB) and finger drop in order to gain further insight into the upstream regulatory steps of the banana finger drop process and to identify putative related candidate genes.
Related JoVE Video
The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.
Nature
Show Abstract
Hide Abstract
Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.