JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing.
Nat. Biotechnol.
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
Genome sequencing studies have shown that human malignancies often bear mutations in four or more driver genes, but it is difficult to recapitulate this degree of genetic complexity in mouse models using conventional breeding. Here we use the CRISPR-Cas9 system of genome editing to overcome this limitation. By delivering combinations of small guide RNAs (sgRNAs) and Cas9 with a lentiviral vector, we modified up to five genes in a single mouse hematopoietic stem cell (HSC), leading to clonal outgrowth and myeloid malignancy. We thereby generated models of acute myeloid leukemia (AML) with cooperating mutations in genes encoding epigenetic modifiers, transcription factors and mediators of cytokine signaling, recapitulating the combinations of mutations observed in patients. Our results suggest that lentivirus-delivered sgRNA:Cas9 genome editing should be useful to engineer a broad array of in vivo cancer models that better reflect the complexity of human disease.
Related JoVE Video
Role of Casein Kinase 1A1 in the Biology and Targeted Therapy of del(5q) MDS.
Cancer Cell
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
The casein kinase 1A1 gene (CSNK1A1) is a putative tumor suppressor gene located in the common deleted region for del(5q) myelodysplastic syndrome (MDS). We generated a murine model with conditional inactivation of Csnk1a1 and found that Csnk1a1 haploinsufficiency induces hematopoietic stem cell expansion and a competitive repopulation advantage, whereas homozygous deletion induces hematopoietic stem cell failure. Based on this finding, we found that heterozygous inactivation of Csnk1a1 sensitizes cells to a CSNK1 inhibitor relative to cells with two intact alleles. In addition, we identified recurrent somatic mutations in CSNK1A1 on the nondeleted allele of patients with del(5q) MDS. These studies demonstrate that CSNK1A1 plays a central role in the biology of del(5q) MDS and is a promising therapeutic target.
Related JoVE Video
Ectopic expression of HOXC6 blocks myeloid differentiation and predisposes to malignant transformation.
Exp. Hematol.
PUBLISHED: 02-12-2014
Show Abstract
Hide Abstract
Insertional mutagenesis resulting from the integration of retroviral vectors has led to the discovery of many oncogenes associated with leukemia. We investigated the role of HOXC6, identified by proximal provirus integration in a large animal hematopoietic stem cell gene therapy study, for a potential involvement in hematopoietic stem cell activity and hematopoietic cell fate decision. HOXC6 was overexpressed in the murine bone marrow transplantation model and tested in a competitive repopulation assay in comparison to the known hematopoietic stem cell expansion factor, HOXB4. We have identified HOXC6 as a factor that enhances competitive repopulation capacity in vivo and colony formation in vitro. Ectopic HOXC6 expression also induced strong myeloid differentiation and expansion of granulocyte-macrophage progenitors/common myeloid progenitors (GMPs/CMPs) in vivo, resulting in myeloid malignancies with low penetrance (3 of 17 mice), likely in collaboration with Meis1 because of a provirus integration mapped to the 3' region in the malignant clone. We characterized the molecular basis of HOXC6-induced myeloid differentiation and malignant cell transformation with complementary DNA microarray analysis. Overexpression of HOXC6 induced a gene expression signature similar to several acute myeloid leukemia subtypes when compared with normal GMPs/CMPs. These results demonstrate that HOXC6 acts as a regulator in hematopoiesis and is involved in malignant transformation.
Related JoVE Video
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science
PUBLISHED: 12-12-2013
Show Abstract
Hide Abstract
The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.
Related JoVE Video
Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells.
Science
PUBLISHED: 11-29-2013
Show Abstract
Hide Abstract
Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced IL2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a novel mechanism of action for a therapeutic agent, alteration of the activity of an E3 ubiquitin ligase leading to selective degradation of specific targets.
Related JoVE Video
Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-? in a murine model of polycythemia vera.
Blood
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
Interferon-? (IFN?) is an effective treatment of patients with myeloproliferative neoplasms (MPNs). In addition to inducing hematological responses in most MPN patients, IFN? reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFN? on JAK2V617F mutant stem cells is debated. Using a murine model of Jak2V617F MPN, we investigated the effects of IFN? on Jak2V617F MPN-propagating stem cells in vivo. We report that IFN? treatment induces hematological responses in the model and causes depletion of Jak2V617F MPN-propagating cells over time, impairing disease transplantation. We demonstrate that IFN? treatment induces cell cycle activation of Jak2V617F mutant long-term hematopoietic stem cells and promotes a predetermined erythroid-lineage differentiation program. These findings provide insights into the differential effects of IFN? on Jak2V617F mutant and normal hematopoiesis and suggest that IFN? achieves molecular remissions in MPN patients through its effects on MPN stem cells. Furthermore, these results support combinatorial therapeutic approaches in MPN by concurrently depleting dormant JAK2V617F MPN-propagating stem cells with IFN? and targeting the proliferating downstream progeny with JAK2 inhibitors or cytotoxic chemotherapy.
Related JoVE Video
Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia.
Blood
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Thpo/Mpl signaling plays an important role in the maintenance of hematopoietic stem cells (HSCs) in addition to its role in megakaryopoiesis. Patients with inactivating mutations in Mpl develop thrombocytopenia and aplastic anemia because of progressive loss of HSCs. Yet, it is unknown whether this loss of HSCs is an irreversible process. In this study, we used the Mpl knockout (Mpl(-/-)) mouse model and expressed Mpl from newly developed lentiviral vectors specifically in the physiologic Mpl target populations, namely, HSCs and megakaryocytes. After validating lineage-specific expression in vivo using lentiviral eGFP reporter vectors, we performed bone marrow transplantation of transduced Mpl(-/-) bone marrow cells into Mpl(-/-) mice. We show that restoration of Mpl expression from transcriptionally targeted vectors prevents lethal adverse reactions of ectopic Mpl expression, replenishes the HSC pool, restores stem cell properties, and corrects platelet production. In some mice, megakaryocyte counts were atypically high, accompanied by bone neo-formation and marrow fibrosis. Gene-corrected Mpl(-/-) cells had increased long-term repopulating potential, with a marked increase in lineage(-)Sca1(+)cKit(+) cells and early progenitor populations in reconstituted mice. Transcriptome analysis of lineage(-)Sca1(+)cKit(+) cells in Mpl-corrected mice showed functional adjustment of genes involved in HSC self-renewal.
Related JoVE Video
Gene therapy of MPL deficiency: challenging balance between leukemia and pancytopenia.
Mol. Ther.
PUBLISHED: 10-20-2009
Show Abstract
Hide Abstract
Signaling of the thrombopoietin (THPO) receptor MPL is critical for the maintenance of hematopoietic stem cells (HSCs) and megakaryocytic differentiation. Inherited loss-of-function mutations of MPL cause severe thrombocytopenia and aplastic anemia, a syndrome called congenital amegakaryocytic thrombocytopenia (CAMT). With the aim to assess the toxicity of retroviral expression of Mpl as a basis for further development of a gene therapy for this disorder, we expressed Mpl in a murine bone marrow transplantation (BMT) model. Treated mice developed a profound yet transient elevation of multilineage hematopoiesis, which showed morphologic features of a chronic myeloproliferative disorder (CMPD) with progressive pancytopenia. Ten percent of mice (3/27) developed erythroleukemia, associated with insertional activation of Sfpi1 and Fli1. The majority of transplanted mice developed a progressive pancytopenia with histopathological features of a myelodysplastic syndrome (MDS)-like disorder. To avoid these adverse reactions, improved retroviral vectors were designed that mediate reduced and more physiological Mpl expression. Self-inactivating gamma-retroviral vectors were constructed that expressed Mpl from the phosphoglycerate kinase (PGK) or the murine Mpl promoter. Mice that received BM cells expressing Mpl from the Mpl promoter were free of any previously observed adverse reactions.
Related JoVE Video
Lentiviral vector induced insertional haploinsufficiency of Ebf1 causes murine leukemia.
Mol. Ther.
Show Abstract
Hide Abstract
Integrating vectors developed on the basis of various retroviruses have demonstrated therapeutic potential following genetic modification of long-lived hematopoietic stem and progenitor cells. Lentiviral vectors (LV) are assumed to circumvent genotoxic events previously observed with ?-retroviral vectors, due to their integration bias to transcription units in comparison to the ?-retroviral preference for promoter regions and CpG islands. However, recently several studies have revealed the potential for gene activation by LV insertions. Here, we report a murine acute B-lymphoblastic leukemia (B-ALL) triggered by insertional gene inactivation. LV integration occurred into the 8th intron of Ebf1, a major regulator of B-lymphopoiesis. Various aberrant splice variants could be detected that involved splice donor and acceptor sites of the lentiviral construct, inducing downregulation of Ebf1 full-length message. The transcriptome signature was compatible with loss of this major determinant of B-cell differentiation, with partial acquisition of myeloid markers, including Csf1r (macrophage colony-stimulating factor (M-CSF) receptor). This was accompanied by receptor phosphorylation and STAT5 activation, both most likely contributing to leukemic progression. Our results highlight the risk of intragenic vector integration to initiate leukemia by inducing haploinsufficiency of a tumor suppressor gene. We propose to address this risk in future vector design.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.