JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effects of the Antidiabetic Drugs on the Age-Related Atrophy and Sarcopenia Associated with Diabetes Type II.
Curr Diabetes Rev
PUBLISHED: 07-08-2014
Show Abstract
Hide Abstract
The skeletal muscle atrophy and sarcopenia are negative prognostic factors in the treatment of the diabetic aged-population. Insulin therapy stimulated protein anabolism in younger but not older patients and failed to prevent atrophy. The insulin- sensitizer glitazones are promising agents against atrophy but the un-favorable benefit/risk profile limits their use. Metformin is an AMPK agonist potentiating insulin actions in the adult human muscle, but not in the aged individuals. The AMPK agonists have the potential to induce atrophy. The KATP channel blockers such as the sulfonylureas and glinide may induce atrophy. Glibenclamide indeed induces atrophy in rat and in human. Within the glinides, repaglinide is the most potent atrophic agent "in vitro" in animals. The GLP-1 and incretins showed beneficial effects in skeletal muscle but their effects on the age-dependent muscle atrophy in human and animals are not known. The novel sodium glucose co-transporter inhibitors may not have been recognized as drug-induced atrophic/anti-atrophic effects. Here we reviewed the effects of the anti-diabetic drugs on the age-related muscle atrophy.
Related JoVE Video
Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis.
Am. J. Pathol.
PUBLISHED: 06-11-2014
Show Abstract
Hide Abstract
Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.
Related JoVE Video
Dual response of the KATP channels to staurosporine: a novel role of SUR2B, SUR1 and Kir6.2 subunits in the regulation of the atrophy in different skeletal muscle phenotypes.
Biochem. Pharmacol.
PUBLISHED: 04-24-2014
Show Abstract
Hide Abstract
We investigated on the role of the genes encoding for the ATP-sensitive K(+)-channel (KATP) subunits (SUR1-2A/B, Kir6.2) in the atrophy induced "in vitro" by staurosporine (STS) in different skeletal muscle phenotypes of mouse. Patch-clamp and gene expression experiments showed that the expression/activity of the sarcolemma KATP channel subunits was higher in the fast-twitch than in the slow-twitch fibers. After 1 to 3h of incubation time, the STS (2.14×10(-6)M) treatment enhanced the expression/activity of the SUR2B, SUR1 and Kir6.2 subunit genes, but not SUR2A, in the slow-twitch muscle fibers, induced the caspase-3-9, Atrogin-1 and Murf-1 gene expression without affecting protein content. After 3 to 6h, the STS-related atrophy markedly down-regulated the SUR2B, SUR1 and Kir6.2 genes reducing the KATP currents and reduced the protein content/muscle weight ratio of the slow-twitch muscle by -36.4±6% (p<0.05). After 6 to 24h, no additional changes of the SUR1-2B and Kir6.2 gene expression and muscle protein were observed. In the fast-twitch muscles, STS mildly affected the atrophic genes and protein content, but potentiated the KATP currents down-regulating the Bnip-3 gene. Diazoxide (250-500×10(-6)M), a SUR1-2B/Kir6.2 channel opener, prevented the protein loss induced by STS in the slow-twitch muscle after 6h showing an EC50 of 1.35×10(-7)M and Emax of 75%, down-regulated the caspase-9 gene and enhanced the KATP currents. The enhanced expression/activity of the SUR2B, SUR1 and Kir6.2 genes are cytoprotective against STS-induced atrophy in the slow-twitch muscle; their reduced expression/activity is associated with proteolysis and atrophy in skeletal muscle.
Related JoVE Video
An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function.
Age (Dordr)
PUBLISHED: 05-14-2013
Show Abstract
Hide Abstract
Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.
Related JoVE Video
Effects of pleiotrophin overexpression on mouse skeletal muscles in normal loading and in actual and simulated microgravity.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca(2+) concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance.
Related JoVE Video
Emerging role of calcium-activated potassium channel in the regulation of cell viability following potassium ions challenge in HEK293 cells and pharmacological modulation.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Emerging evidences suggest that Ca(2+)activated-K(+)-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10(-11)-10(-3)M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2 x 10(-7)M-5 x 10(-3)M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ?RESV? ETX> NS1619> MTZ? QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the cell proliferation induced by hyperkalemia. These findings may have relevance in disorders associated with abnormal K(+) ion homeostasis including periodic paralysis and myotonia.
Related JoVE Video
Major channels involved in neuropsychiatric disorders and therapeutic perspectives.
Front Genet
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Moreover, point mutations in calcium, sodium, and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium, and potassium channels in BPD, schizophrenia, and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.
Related JoVE Video
Structural nucleotide analogs are potent activators/inhibitors of pancreatic ? cell KATP channels: an emerging mechanism supporting their use as antidiabetic drugs.
J. Pharmacol. Exp. Ther.
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
The 2H-1,4-benzoxazine derivatives are novel drugs structurally similar to nucleotides; however, their actions on the pancreatic ? cell ATP-sensitive K+ (KATP) channel and on glucose disposal are unknown. Therefore, the effects of the linear/branched alkyl substituents and the aliphatic/aromatic rings at position 2 of the 2H-1,4-benzoxazine nucleus on the activity of these molecules against the pancreatic ? cell KATP channel and the Kir6.2?C36 subunit were investigated using a patch-clamp technique. The effects of these compounds on glucose disposal that followed glucose loading by intraperitoneal glucose tolerance test and on fasting glycemia were investigated in normal mice. The 2-n-hexyl analog blocked the KATP (IC?? = 10.1 × 10?? M) and Kir6.2?C36 (IC?? = 9.6 × 10?? M) channels, which induced depolarization. In contrast, the 2-phenyl analog was a potent opener (drug concentration needed to enhance the current by 50% = 0.04 × 10?? M), which induced hyperpolarization. The ranked order of the potency/efficacy of the analog openers was 2-phenyl > 2-benzyl > 2-cyclohexylmethyl. The 2-phenylethyl and 2-isopropyl analogs were not effective as blockers/openers. The 2-n-hexyl (2-10 mg/kg) and 2-phenyl analogs (2-30 mg/kg) reduced and enhanced the glucose areas under the curves, respectively, after glucose loading in mice. These compounds did not affect the fasting glycemia as is observed with glibenclamide. The linear alkyl chain and the aromatic ring at position 2 of the 1,4-benzoxazine nucleus are the determinants, which confer the KATP channel blocking action with glucose-lowering effects and the opening action with increased glucose levels, respectively. The opening/blocking actions of these compounds mimic those that were observed with ATP and ADP. The results support the use of these compounds as novel antidiabetic drugs.
Related JoVE Video
Recent advances in the pathogenesis and drug action in periodic paralyses and related channelopathies.
Front Pharmacol
PUBLISHED: 01-03-2011
Show Abstract
Hide Abstract
The periodic paralysis (PP) are rare autosomal-dominant disorders associated to mutations in the skeletal muscle sodium, calcium, and potassium channel genes characterized by muscle fiber depolarization with un-excitability, episodes of weakness with variations in serum potassium concentrations. Recent advances in thyrotoxic PP and hypokalemic PP (hypoPP) confirm the involvement of the muscle potassium channels in the pathogenesis of the diseases and their role as target of action for drugs of therapeutic interest. The novelty in the gating pore currents theory help to explain the disease symptoms, and open the possibility to more specifically target the disease. It is now known that the fiber depolarization in the hypoPP is due to an unbalance between the novel identified depolarizing gating pore currents (I(gp)) carried by protons or Na(+) ions flowing through aberrant alternative pathways of the mutant subunits and repolarizing inwardly rectifying potassium channel (Kir) currents which also includes the ATP-sensitive subtype. Abnormal activation of the I(gp) or deficiency in the Kir channels predispose to fiber depolarization. One pharmacological strategy is based on blocking the I(gp) without affecting normal channel gating. It remains safe and effective the proposal of targeting the K(ATP), Kir channels, or BK channels by drugs capable to specifically open at nanomolar concentrations the skeletal muscle subtypes with less side effects.
Related JoVE Video
The KATP channel is a molecular sensor of atrophy in skeletal muscle.
J. Physiol. (Lond.)
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
The involvement of ATP-sensitive K(+) (K(ATP)) channels in the atrophy of slow-twitch (MHC-I) soleus (SOL) and fast-twitch (MHC-IIa) flexor digitorum brevis (FDB) muscles was investigated in vivo in 14-day-hindlimb-unloaded (14-HU) rats, an animal model of disuse, and in vitro in drug-induced muscle atrophy. Patch-clamp and gene expression experiments were performed in combination with measurements of fibre diameters used as an index of atrophy, and with MHC labelling in 14-HU rats and controls. A down-regulation of K(ATP) channel subunits Kir6.2, SUR1 and SUR2B with marked atrophy and incomplete phenotype transition were observed in SOL of 14-HU rats. The observed changes in K(ATP) currents were well correlated with changes in fibre diameters and SUR1 expression, as well as with MHC-IIa expression. Half of the SOL fibres of 14-HU rats had reduced diameter and K(ATP) currents and were labelled by MHC-I antibodies. Non-atrophic fibres were labelled by MHC-IIa (22%) antibodies and had enhanced K(ATP) currents, or were labelled by MHC-I (28%) antibodies but had normal current. FDB was not affected in 14-HU rats and this is related to the high expression/activity of Kir6.2/SUR1 subunits characterizing this muscle phenotype. The long-term incubation of the control muscles in vitro with the K(ATP) channel blocker glibenclamide (10(6)m) reduced the K(ATP) currents with atrophy and these effects were prevented by the K(ATP) channel opener diazoxide (10(4)m). The in vivo down-regulation of SUR1, and possibly of Kir6.2 and SUR2B, or their in vitro pharmacological blockade activates atrophic signalling in skeletal muscle. All these findings suggest a new role for the K(ATP) channel as a molecular sensor of atrophy.
Related JoVE Video
Opening/blocking actions of pyruvate kinase antibodies on neuronal and muscular KATP channels.
Pharmacol. Res.
Show Abstract
Hide Abstract
ATP-sensitive-K(+) (KATP) channels couple metabolism to the electrical activity of the cells. This channel is associated with glycolytic enzymes to form complexes regulating the channel activity in various tissues. The pyruvate-kinase (PK) enzyme is an antigen in the Paediatric Autoimmune Neuropsychiatric Disorders Associated Streptococcal infection known as PANDAS which is characterized by an abnormal production of auto-antibodies against PK. Here, the effects of the anti-pyruvate kinase antibody (anti-PK-ab) on the muscle and neuronal KATP channels were investigated in native rat skeletal muscle fibres and human neuroblastoma cell-line (SH-SY5Y), respectively. Furthermore, the interaction of PK with the inwardly rectifier potassium channel (Kir6.1/Kir6.2) subunits of the KATP channels was investigated by co-immunoprecipitation experiments in mouse brain using the anti-PK-ab. Patch-clamp experiments showed that the short-term incubation (1h) of the fibres with the anti-PK-ab at the dilutions of 1:500 and 1:300 enhanced the KATP current of 19.6% and 33.5%, respectively. As opposite, the long-term incubation (24h) of the fibres with the anti-PK-ab at the dilutions of 1:500 and 1:300 reduced the KATP current of 16% and 24%, respectively, reducing the diameter with atrophy. The direct application of the anti-PK-ab to the excised patches in the absence of intracellular ATP caused channel block, while in the presence of nucleotide channel opened. In neuronal cell line, in the short-term the anti-PK-ab potentiated KATP currents without affecting survival, while in the long-term the anti-PK-ab reduced KATP currents inducing neuronal death. Opening/blocking actions of the anti-PK antibodies on the KATP channels were observed, the blocking action causes fibre atrophy and neuronal death. We demonstrated that PK and Kir subunits are physically/functionally coupled in neurons. The KATP/PK complex can be proposed a novel target in the autoimmune diseases associated with anti-PK production as in PANDAS.
Related JoVE Video
Splicing of the rSlo gene affects the molecular composition and drug response of Ca2+-activated K+ channels in skeletal muscle.
PLoS ONE
Show Abstract
Hide Abstract
The molecular composition and drug responses of calcium-activated K(+) (BK) channels of skeletal muscle are unknown. Patch-clamp experiments combined with transcript scanning of the Kcnma1 gene encoding the alpha subunit of the BK channel were performed in rat slow-twitch soleus (Sol) and fast-twitch flexor digitorum brevis (FDB) skeletal muscles. Five splicing products of the Kcnma1 gene were isolated from Sol and FDB: the e17, e22, +29 aa, Slo27 and Slo0 variants. RT-PCR analysis demonstrated that the expression of e22 and Slo0 were 80-90% higher in FDB than Sol, whereas the expression of Slo27 was 60% higher in Sol than FDB, and the +29 aa variant was equally expressed in both muscle types. No beta 1-4 subunits were detected. In Sol, a large BK current with low Ca(2+) sensitivity was recorded. The BK channel of Sol also showed a reduced response to BK channel openers, such as NS1619, acetazolamide and related drugs. In FDB, a reduced BK current with high Ca(2+) sensitivity and an enhanced drug response was recorded. The total BK RNA content, which was 200% higher in Sol than in FDB, correlated with the BK currents in both muscles. Drug responses primarily correlated with e22 and Slo0 expression levels in FDB and to Slo27 expression in Sol muscle. In conclusion, phenotype-dependent BK channel biophysical and pharmacological properties correlated with the expression levels of the variants in muscles. These findings may be relevant to conditions affecting postural muscles, such as prolonged bed-rest, and to diseases affecting fast-twitch muscles, such as periodic paralysis. Down-regulation or up-regulation of the variants associated with pathological conditions may affect channel composition and drug responses.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.