JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Laminin ?2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
It has been known for some time that laminins containing ?1 and ?2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM) of Alport mice, dogs, and humans. We show that laminins containing the ?2 chain, but not those containing the ?1 chain activates focal adhesion kinase (FAK) on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of ?2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin ?2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.
Related JoVE Video
EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE) and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating ?-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the ?-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat) rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.
Related JoVE Video
Usher protein functions in hair cells and photoreceptors.
Int. J. Biochem. Cell Biol.
PUBLISHED: 11-12-2013
Show Abstract
Hide Abstract
The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilias actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome.
Related JoVE Video
Photoreceptors in whirler mice show defective transducin translocation and are susceptible to short-term light/dark changes-induced degeneration.
Exp. Eye Res.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Usher syndrome combines congenital hearing loss and retinitis pigmentosa (RP). Mutations in the whirlin gene (DFNB31/WHRN) cause a subtype of Usher syndrome (USH2D). Whirler mice have a defective whirlin gene. They have inner ear defects but usually do not develop retinal degeneration. Here we report that, in whirler mouse photoreceptors, the light-activated rod transducin translocation is delayed and its activation threshold is shifted to a higher level. Rhodopsin mis-localization is observed in rod inner segments. Continuous moderate light exposure can induce significant rod photoreceptor degeneration. Whirler mice reared under a 1500 lux light/dark cycle also develop severe photoreceptor degeneration. Previously, we have reported that shaker1 mice, a USH1B model, show moderate light-induced photoreceptor degeneration with delayed transducin translocation. Here, we further show that, in both whirler and shaker1 mice, short-term moderate light/dark changes can induce rod degeneration as severe as that induced by continuous light exposure. The results from shaker1 and whirler mice suggest that defective transducin translocation may be functionally related to light-induced degeneration, and these two symptoms may be caused by defects in Usher protein function in rods. Furthermore, these results indicate that both Usher syndrome mouse models possess a light-induced retinal phenotype and may share a closely related pathobiological mechanism.
Related JoVE Video
?1?1 integrin/Rac1-dependent mesangial invasion of glomerular capillaries in Alport syndrome.
Am. J. Pathol.
PUBLISHED: 02-22-2013
Show Abstract
Hide Abstract
Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. L-NAME salt-induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin ?1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin ?1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin ?2-deficient Alport mice show reduced mesangial process invasion, and cultured laminin ?2-null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin ?1?1-dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology.
Related JoVE Video
Light-induced translocation of RGS9-1 and G?5L in mouse rod photoreceptors.
PLoS ONE
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
The transducin GTPase-accelerating protein complex, which determines the photoresponse duration of photoreceptors, is composed of RGS9-1, G?5L and R9AP. Here we report that RGS9-1 and G?5L change their distribution in rods during light/dark adaptation. Upon prolonged dark adaptation, RGS9-1 and G?5L are primarily located in rod inner segments. But very dim-light exposure quickly translocates them to the outer segments. In contrast, their anchor protein R9AP remains in the outer segment at all times. In the dark, G?5Ls interaction with R9AP decreases significantly and RGS9-1 is phosphorylated at S(475) to a significant degree. Dim light exposure leads to quick de-phosphorylation of RGS9-1. Furthermore, after prolonged dark adaptation, RGS9-1 and transducin G? are located in different cellular compartments. These results suggest a previously unappreciated mechanism by which prolonged dark adaptation leads to increased light sensitivity in rods by dissociating RGS9-1 from R9AP and redistributing it to rod inner segments.
Related JoVE Video
Glomerular pathology in Alport syndrome: a molecular perspective.
Pediatr. Nephrol.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
We have known for some time that mutations in the genes encoding 3 of the 6 type IV collagen chains are the underlying defect responsible for both X-linked (where the COL4A5 gene is involved) and autosomal (where either COL4A3 or COL4A4 genes are involved) Alport syndrome. The result of these mutations is the absence of the sub-epithelial network of all three chains in the glomerular basement membrane (GBM), resulting, at maturity, in a type IV collagen GBM network comprising only ?1(IV) and ?2(IV) chains. The altered GBM functions adequately in early life. Eventually, there is onset of proteinuria associated with the classic and progressive irregular thickening, thinning, and splitting of the GBM, which culminates in end-stage renal failure. We have learned much about the molecular events associated with disease onset and progression through the study of animal models for Alport syndrome, and have identified some potential therapeutic approaches that may serve to delay the onset or slow the progression of the disease. This review focuses on where we are in our understanding of the disease, where we need to go to understand the molecular triggers that set the process in motion, and what emergent therapeutic approaches show promise for ameliorating disease progression in the clinic.
Related JoVE Video
Moderate light-induced degeneration of rod photoreceptors with delayed transducin translocation in shaker1 mice.
Invest. Ophthalmol. Vis. Sci.
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
PURPOSE. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. METHODS. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. RESULTS. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. CONCLUSIONS. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light.
Related JoVE Video
Collagen XIII induced in vascular endothelium mediates alpha1beta1 integrin-dependent transmigration of monocytes in renal fibrosis.
Am. J. Pathol.
PUBLISHED: 09-23-2010
Show Abstract
Hide Abstract
Alport syndrome is a common hereditary basement membrane disorder caused by mutations in the collagen IV ?3, ?4, or ?5 genes that results in progressive glomerular and interstitial renal disease. Interstitial monocytes that accumulate in the renal cortex from Alport mice are immunopositive for integrin ?1?1, while only a small fraction of circulating monocytes are immunopositive for this integrin. We surmised that such a disparity might be due to the selective recruitment of ?1?1-positive monocytes. In this study, we report the identification of collagen XIII as a ligand that facilitates this selective recruitment of ?1?1 integrin-positive monocytes. Collagen XIII is absent in the vascular endothelium from normal renal cortex and abundant in Alport renal cortex. Neutralizing antibodies against the binding site in collagen XIII for ?1?1 integrin selectively block VLA1-positive monocyte migration in transwell assays. Injection of these antibodies into Alport mice slows monocyte recruitment and protects against renal fibrosis. Thus, the induction of collagen XIII in endothelial cells of Alport kidneys mediates the selective recruitment of ?1?1 integrin-positive monocytes and may potentially serve as a therapeutic target for inflammatory diseases in which lymphocyte/monocyte recruitment involves the interaction with ?1?1 integrin.
Related JoVE Video
Biochemical characterization of native Usher protein complexes from a vesicular subfraction of tracheal epithelial cells.
Biochemistry
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in nondetergent buffer and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15, and VLGR-1 and a different one at the top of the gradient that included all of the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100-200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins cosediment into the gradient at a sedimentation coefficient of approximately 50 S, correlating with a predicted molecular mass of 2 x 10(6) Da. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher protein complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors.
Related JoVE Video
Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease.
Kidney Int.
PUBLISHED: 08-26-2009
Show Abstract
Hide Abstract
Patients with Alports syndrome develop a number of pro-inflammatory cytokine and matrix metalloproteinase (MMP) abnormalities that contribute to progressive renal failure. Changes in the composition and structure of the glomerular basement membranes likely alter the biomechanics of cell adhesion and signaling in these patients. To test if enhanced strain on the capillary tuft due to these structural changes contributes to altered gene regulation, we subjected cultured podocytes to cyclic biomechanical strain. There was robust induction of interleukin (IL)-6, along with MMP-3, -9, -10, and -14, but not MMP-2 or -12 by increased strain. Neutralizing antibodies against IL-6 attenuated the strain-mediated induction of MMP-3 and -10. Alport mice treated with a general inhibitor of nitric oxide synthase (L-NAME) developed significant hypertension and increased IL-6 and MMP-3 and -10 in their glomeruli relative to those of normotensive Alport mice. These hypertensive Alport mice also had elevated proteinuria along with more advanced histological and ultrastructural glomerular basement membrane damage. We suggest that MMP and cytokine dysregulation may constitute a maladaptive response to biomechanical strain in the podocytes of Alport patients, thus contributing to glomerular disease initiation and progression.
Related JoVE Video
FAK and p38-MAP kinase-dependent activation of apoptosis and caspase-3 in retinal endothelial cells by alpha1(IV)NC1.
Invest. Ophthalmol. Vis. Sci.
PUBLISHED: 05-14-2009
Show Abstract
Hide Abstract
To determine the impact of the antiangiogenic factor alpha1(IV)NC1 on vascular endothelial growth factor-mediated proangiogenic activity in mouse retinal endothelial cells (MRECs).
Related JoVE Video
Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors.
Hear. Res.
PUBLISHED: 03-24-2009
Show Abstract
Hide Abstract
The Usher syndrome 3A (CLRN1) gene encodes clarin-1, which is a member of the tetraspanin family of transmembrane proteins. Although identified more than 6 years ago, little is known about its localization or function in the eye and ear. We developed a polyclonal antibody that react with all clarin-1 isoforms and used it to characterize protein expression in cochlea and retina. In the cochlea, we observe clarin-1expression in the stereocilia of P0 mice, and in synaptic terminals present at the base of the auditory hair cells from E18 to P6. In the retina, clarin-1 localizes to the connecting cilia, inner segment of photoreceptors and to the ribbon synapses. RT-PCR from P0 cochlea and P28 retina show mRNAs encoding only isoforms 2 and 3. Western blots show that only isoform 2 is present in protein extracts from these same tissues. We examined clarin-1 expression in the immortomouse-derived hair cell line UB/OC-1. Only isoform 2 is expressed in UB/OC-1 at both mRNA and protein levels, suggesting this isoform is biologically relevant to hair cell function. The protein co-localizes with microtubules and post-transgolgi vesicles. The subcellular localization of clarin-1 in hair cells and photoreceptors suggests it functions at both the basal and apical poles of neurosensoriepithelia.
Related JoVE Video
Regulated vesicular trafficking of specific PCDH15 and VLGR1 variants in auditory hair cells.
J. Neurosci.
Show Abstract
Hide Abstract
Usher syndrome is a genetically heterogeneous disorder characterized by hearing and balance dysfunction and progressive retinitis pigmentosa. Mouse models carrying mutations for the nine Usher-associated genes have splayed stereocilia, and some show delayed maturation of ribbon synapses suggesting these proteins may play different roles in terminal differentiation of auditory hair cells. The presence of the Usher proteins at the basal and apical aspects of the neurosensory epithelia suggests the existence of regulated trafficking through specific transport proteins and routes. Immature mouse cochleae and UB/OC-1 cells were used in this work to address whether specific variants of PCDH15 and VLGR1 are being selectively transported to opposite poles of the hair cells. Confocal colocalization studies between apical and basal vesicular markers and the different PCDH15 and VLGR1 variants along with sucrose density gradients and the use of vesicle trafficking inhibitors show the existence of Usher protein complexes in at least two vesicular subpools. The apically trafficked pool colocalized with the early endosomal vesicle marker, rab5, while the basally trafficked pool associated with membrane microdomains and SNAP25. Moreover, coimmunoprecipitation experiments between SNAP25 and VLGR1 show a physical interaction of these two proteins in organ of Corti and brain. Collectively, these findings establish the existence of a differential vesicular trafficking mechanism for specific Usher protein variants in mouse cochlear hair cells, with the apical variants playing a potential role in endosomal recycling and stereocilia development/maintenance, and the basolateral variants involved in vesicle docking and/or fusion through SNAP25-mediated interactions.
Related JoVE Video
Role for a novel Usher protein complex in hair cell synaptic maturation.
PLoS ONE
Show Abstract
Hide Abstract
The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J) mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.