JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Fifty thousand years of Arctic vegetation and megafaunal diet.
Nature
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.
Related JoVE Video
Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.
Nature
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43?kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalskis horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5?million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2?Myr, particularly during periods of severe climatic changes. We estimate that the Przewalskis and domestic horse populations diverged 38-72?kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalskis horse investigated. This supports the contention that Przewalskis horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalskis and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalskis horse. Such regions could correspond to loci selected early during domestication.
Related JoVE Video
Amplicon pyrosequencing late Pleistocene permafrost: the removal of putative contaminant sequences and small-scale reproducibility.
Mol Ecol Resour
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
DNA sequencing of ancient permafrost samples can be used to reconstruct past plant, animal and bacterial communities. In this study, we assess the small-scale reproducibility of taxonomic composition obtained from sequencing four molecular markers (mitochondrial 12S ribosomal DNA (rDNA), prokaryote 16S rDNA, mitochondrial cox1 and chloroplast trnL intron) from two soil cores sampled 10 cm apart. In addition, sequenced control reactions were used to produce a contaminant library that was used to filter similar sequences from sample libraries. Contaminant filtering resulted in the removal of 1% of reads or 0.3% of operational taxonomic units. We found similar richness, overlap, abundance and taxonomic diversity from the 12S, 16S and trnL markers from each soil core. Jaccard dissimilarity across the two soil cores was highest for metazoan taxa detected by the 12S and cox1 markers. Taxonomic community distances were similar for each marker across the two soil cores when the chi-squared metric was used; however, the 12S and cox1 markers did not cluster well when the Goodall similarity metric was used. A comparison of plant macrofossil vs. read abundance corroborates previous work that suggests eastern Beringia was dominated by grasses and forbs during cold stages of the Pleistocene, a habitat that is restricted to isolated sites in the present-day Yukon.
Related JoVE Video
Mitochondrial phylogenomics of modern and ancient equids.
PLoS ONE
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevys zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).
Related JoVE Video
True single-molecule DNA sequencing of a pleistocene horse bone.
Genome Res.
PUBLISHED: 07-29-2011
Show Abstract
Hide Abstract
Second-generation sequencing platforms have revolutionized the field of ancient DNA, opening access to complete genomes of past individuals and extinct species. However, these platforms are dependent on library construction and amplification steps that may result in sequences that do not reflect the original DNA template composition. This is particularly true for ancient DNA, where templates have undergone extensive damage post-mortem. Here, we report the results of the first "true single molecule sequencing" of ancient DNA. We generated 115.9 Mb and 76.9 Mb of DNA sequences from a permafrost-preserved Pleistocene horse bone using the Helicos HeliScope and Illumina GAIIx platforms, respectively. We find that the percentage of endogenous DNA sequences derived from the horse is higher among the Helicos data than Illumina data. This result indicates that the molecular biology tools used to generate sequencing libraries of ancient DNA molecules, as required for second-generation sequencing, introduce biases into the data that reduce the efficiency of the sequencing process and limit our ability to fully explore the molecular complexity of ancient DNA extracts. We demonstrate that simple modifications to the standard Helicos DNA template preparation protocol further increase the proportion of horse DNA for this sample by threefold. Comparison of Helicos-specific biases and sequence errors in modern DNA with those in ancient DNA also reveals extensive cytosine deamination damage at the 3 ends of ancient templates, indicating the presence of 3-sequence overhangs. Our results suggest that paleogenomes could be sequenced in an unprecedented manner by combining current second- and third-generation sequencing approaches.
Related JoVE Video
Species-specific responses of Late Quaternary megafauna to climate and humans.
Nature
PUBLISHED: 04-22-2011
Show Abstract
Hide Abstract
Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
Related JoVE Video
Antibiotic resistance is ancient.
Nature
PUBLISHED: 03-28-2011
Show Abstract
Hide Abstract
The discovery of antibiotics more than 70 years ago initiated a period of drug innovation and implementation in human and animal health and agriculture. These discoveries were tempered in all cases by the emergence of resistant microbes. This history has been interpreted to mean that antibiotic resistance in pathogenic bacteria is a modern phenomenon; this view is reinforced by the fact that collections of microbes that predate the antibiotic era are highly susceptible to antibiotics. Here we report targeted metagenomic analyses of rigorously authenticated ancient DNA from 30,000-year-old Beringian permafrost sediments and the identification of a highly diverse collection of genes encoding resistance to ?-lactam, tetracycline and glycopeptide antibiotics. Structure and function studies on the complete vancomycin resistance element VanA confirmed its similarity to modern variants. These results show conclusively that antibiotic resistance is a natural phenomenon that predates the modern selective pressure of clinical antibiotic use.
Related JoVE Video
Tephra from ice- A simple method to routinely mount, polish, and quantitatively analyze sparse fine particles.
Microsc. Microanal.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
A method involving a graphite substrate has been developed for the mounting and analysis of sparse, fine particles from a liquid suspension to enable improved study of volcanic ash (tephra) and atmospheric dust preserved in glacial ice. Unpolished grains may be studied by scanning electron microscope-energy dispersive spectrometry (SEM-EDS) at full vacuum without the need for a conductive coating due to the close proximity of the underlying graphite. The same grains in the same relative positions may be subsequently examined in polished mounts by a variety of methods including SEM-EDS, electron probe microanalysis, laser ablation-inductively coupled plasma-mass spectroscopy, secondary ion mass spectrometry, and optical microscopy. Particles as small as 3-5 microm may be routinely and easily prepared for analysis as polished grains, and particles of significantly different sizes may be exposed simultaneously. The general approach also offers significant flexibility, including both single- and multiple-sample mounts, and may be adjusted to suit a variety of samples and analytical methods.
Related JoVE Video
Ancient DNA reveals late survival of mammoth and horse in interior Alaska.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-17-2009
Show Abstract
Hide Abstract
Causes of late Quaternary extinctions of large mammals ("megafauna") continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000-13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or confined to refugia. Here we report an alternative approach to detect ghost ranges of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene.
Related JoVE Video
Non-destructive sampling of ancient insect DNA.
PLoS ONE
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago -- an alternative approach that also does not involve destruction of valuable material.
Related JoVE Video
Improving the performance of true single molecule sequencing for ancient DNA.
BMC Genomics
Show Abstract
Hide Abstract
Second-generation sequencing technologies have revolutionized our ability to recover genetic information from the past, allowing the characterization of the first complete genomes from past individuals and extinct species. Recently, third generation Helicos sequencing platforms, which perform true Single-Molecule DNA Sequencing (tSMS), have shown great potential for sequencing DNA molecules from Pleistocene fossils. Here, we aim at improving even further the performance of tSMS for ancient DNA by testing two novel tSMS template preparation methods for Pleistocene bone fossils, namely oligonucleotide spiking and treatment with DNA phosphatase.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.