JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Diversity-Oriented Synthesis Probe Targets Plasmodium falciparum Cytochrome b Ubiquinone Reduction Site and Synergizes With Oxidation Site Inhibitors.
J. Infect. Dis.
PUBLISHED: 10-21-2014
Show Abstract
Hide Abstract
?The emergence and spread of drug resistance to current antimalarial therapies remains a pressing concern, escalating the need for compounds that demonstrate novel modes of action. Diversity-Oriented Synthesis (DOS) libraries bridge the gap between conventional small molecule and natural product libraries, allowing the interrogation of more diverse chemical space in efforts to identify probes of novel parasite pathways.
Related JoVE Video
Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents.
J. Med. Chem.
PUBLISHED: 10-13-2014
Show Abstract
Hide Abstract
Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure-activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.
Related JoVE Video
Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells.
Science
PUBLISHED: 11-29-2013
Show Abstract
Hide Abstract
Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced IL2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a novel mechanism of action for a therapeutic agent, alteration of the activity of an E3 ubiquitin ligase leading to selective degradation of specific targets.
Related JoVE Video
Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria.
ACS Med Chem Lett
PUBLISHED: 10-14-2011
Show Abstract
Hide Abstract
Here, we describe the discovery of a novel antimalarial agent using phenotypic screening of Plasmodium falciparum asexual blood-stage parasites. Screening a novel compound collection created using diversity-oriented synthesis (DOS) led to the initial hit. Structure-activity relationships guided the synthesis of compounds having improved potency and water solubility, yielding a subnanomolar inhibitor of parasite asexual blood-stage growth. Optimized compound 27 has an excellent off-target activity profile in erythrocyte lysis and HepG2 assays and is stable in human plasma. This compound is available via the molecular libraries probe production centers network (MLPCN) and is designated ML238.
Related JoVE Video
Diversity-oriented synthesis of 13- to 18-membered macrolactams via ring-closing metathesis.
J. Org. Chem.
PUBLISHED: 08-29-2011
Show Abstract
Hide Abstract
An efficient build/couple/pair approach to diversity-oriented synthesis was employed to access several structurally complex macrolactams. In this paper, we describe the successful evaluation of ring-closing metathesis toward the systematic generation of skeletal diversity. By appropriately varying the nature and chain length of the alkenol fragment, a diverse collection of 13- to 18-membered macrolactams were obtained.
Related JoVE Video
Fragment-based domain shuffling approach for the synthesis of pyran-based macrocycles.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-07-2011
Show Abstract
Hide Abstract
Complexity and the presence of stereogenic centers have been correlated with success as compounds transition from discovery through the clinic. Here we describe the synthesis of a library of pyran-containing macrocycles with a high degree of structural complexity and up to five stereogenic centers. A key feature of the design strategy was to use a modular synthetic route with three fragments that can be readily interchanged or "shuffled" to produce subtly different variants with distinct molecular shapes. A total of 352 macrocycles were synthesized ranging in size from 14- to 16-membered rings. In order to facilitate the generation of stereostructure-activity relationships, the complete matrix of stereoisomers was prepared for each macrocycle. Solid-phase assisted parallel solution-phase techniques were employed to allow for rapid analogue generation. An intramolecular nitrile-activated nucleophilic aromatic substitution reaction was used for the key macrocyclization step.
Related JoVE Video
An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors.
J. Am. Chem. Soc.
PUBLISHED: 11-10-2010
Show Abstract
Hide Abstract
An aldol-based build/couple/pair (B/C/P) strategy was applied to generate a collection of stereochemically and skeletally diverse small molecules. In the build phase, a series of asymmetric syn- and anti-aldol reactions were performed to produce four stereoisomers of a Boc-protected ?-amino acid. In addition, both stereoisomers of O-PMB-protected alaninol were generated to provide a chiral amine coupling partner. In the couple step, eight stereoisomeric amides were synthesized by coupling the chiral acid and amine building blocks. The amides were subsequently reduced to generate the corresponding secondary amines. In the pair phase, three different reactions were employed to enable intramolecular ring-forming processes: nucleophilic aromatic substitution (S(N)Ar), Huisgen [3+2] cycloaddition, and ring-closing metathesis (RCM). Despite some stereochemical dependencies, the ring-forming reactions were optimized to proceed with good to excellent yields, providing a variety of skeletons ranging in size from 8- to 14-membered rings. Scaffolds resulting from the RCM pairing reaction were diversified on the solid phase to yield a 14?400-membered library of macrolactams. Screening of this library led to the discovery of a novel class of histone deacetylase inhibitors, which display mixed enzyme inhibition, and led to increased levels of acetylation in a primary mouse neuron culture. The development of stereo-structure/activity relationships was made possible by screening all 16 stereoisomers of the macrolactams produced through the aldol-based B/C/P strategy.
Related JoVE Video
Hits, leads and drugs against malaria through diversity-oriented synthesis.
Future Med Chem
Show Abstract
Hide Abstract
Malaria is a devastating infectious disease and approximately half the worlds population is at risk. Since vaccination is not yet available, small-molecule-based medicines are currently the best option for the treatment of patients suffering from malaria and combating the spread of infection. Development of resistance against existing drugs has created a need for new types of small molecules to be screened against Plasmodium falciparum, the etiological agent of malaria. The advent of diversity-oriented synthesis has enabled access to novel chemical structures. Evaluation of diversity-oriented synthesis compounds in phenotypic assays for growth inhibition of P. falciparum has resulted in novel hits, leads and even investigational drugs against malaria.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.