JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Keto amphetamine toxicity-focus on the redox reactivity of the cathinone designer drug mephedrone.
Toxicol. Sci.
PUBLISHED: 06-09-2014
Show Abstract
Hide Abstract
The ?-keto amphetamine (cathinone, ?-KA) designer drugs such as mephedrone (4-methylmethcathinone, 4-MMC) show a large degree of structural similarity to amphetamines like methamphetamine (METH). However, little is currently known about whether these substances also share the potential neurotoxic properties of their non-keto amphetamine counterparts, or what mechanisms could be involved. Here, we evaluate the cytotoxicity of ?-KAs in SH-SY5Y cells using lactate dehydrogenase (LDH) assays, assess the redox potential of a range of ?-KAs and non-keto amphetamines using the sensitive redox indicator 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1), and explore the effect of 4-MMC on the formation of protein adducts using ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) and on the mitochondrial respiratory chain using high-resolution respirometry. We show that treatment with ?-KAs increases LDH release. Further, we demonstrate that even under physiological pH, ?-KAs are effective and selective-as compared with their non-keto analogues-reductants in the presence of electron acceptors. Increased pH (range 7.6-8.0) greatly enhanced the reactivity up to sixfold. We found no evidence of protein adduct formation, suggesting the reactivity is due to direct electron transfer by the ?-KAs. Finally, we show that 4-MMC and METH produce dissimilar effects on the respiratory chain. Our results indicate that ?-KAs such as 4-MMC possess cytotoxic properties in vitro. Furthermore, in the presence of an electron-accepting redox partner, the ketone moiety of ?-KAs is vital for pH-dependent redox reactivity. Further work is needed to establish the importance of ?-KA redox properties and its potential toxicological importance in vivo.
Related JoVE Video
VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart.
EMBO Mol Med
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia-reperfusion. VEGF-B increased VEGF signals via VEGF receptor-2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, readjusting cardiomyocyte metabolic pathways to favor glucose oxidation and macromolecular biosynthesis. However, contrasting with a previous theory, there was no difference in fatty acid uptake by the heart between the VEGF-B transgenic, gene-targeted or wildtype rats. Importantly, we also show that VEGF-B expression is reduced in human heart disease. Our data indicate that VEGF-B could be used to increase the coronary vasculature and to reprogram myocardial metabolism to improve cardiac function in ischemic heart disease.
Related JoVE Video
Immune cells control skin lymphatic electrolyte homeostasis and blood pressure.
J. Clin. Invest.
PUBLISHED: 04-05-2013
Show Abstract
Hide Abstract
The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function.
Related JoVE Video
Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning.
J Extracell Vesicles
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Mesenchymal stromal cells (MSC) are shown to have a great therapeutic potential in many immunological disorders. Currently the therapeutic effect of MSCs is considered to be mediated via paracrine interactions with immune cells. Umbilical cord blood is an attractive but still less studied source of MSCs. We investigated the production of extracellular membrane vesicles (MVs) from human umbilical cord blood derived MSCs (hUCBMSC) in the presence (MVstim) or absence (MVctrl) of inflammatory stimulus.
Related JoVE Video
Caloric restriction ameliorates angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy.
Hypertension
PUBLISHED: 11-07-2011
Show Abstract
Hide Abstract
Angiotensin II-induced cardiac damage is associated with oxidative stress-dependent mitochondrial dysfunction. Caloric restriction (CR), a dietary regimen that increases mitochondrial activity and cellular stress resistance, could provide protection. We tested that hypothesis in double transgenic rats harboring human renin and angiotensinogen genes (dTGRs). CR (60% of energy intake for 4 weeks) decreased mortality in dTGRs. CR ameliorated angiotensin II-induced cardiomyocyte hypertrophy, vascular inflammation, cardiac damage and fibrosis, cardiomyocyte apoptosis, and cardiac atrial natriuretic peptide mRNA overexpression. The effects were blood pressure independent and were linked to increased endoplasmic reticulum stress, autophagy, serum adiponectin level, and 5 AMP-activated protein kinase phosphorylation. CR decreased cardiac p38 phosphorylation, nitrotyrosine expression, and serum insulin-like growth factor 1 levels. Mitochondria from dTGR hearts showed clustered mitochondrial patterns, decreased numbers, and volume fractions but increased trans-sectional areas. All of these effects were reduced in CR dTGRs. Mitochondrial proteomic profiling identified 43 dTGR proteins and 42 Sprague-Dawley proteins, of which 29 proteins were in common in response to CR. We identified 7 proteins in CR dTGRs that were not found in control dTGRs. In contrast, 6 mitochondrial proteins were identified from dTGRs that were not detected in any other group. Gene ontology annotations with the Panther protein classification system revealed downregulation of cytoskeletal proteins and enzyme modulators and upregulation of oxidoreductase activity in dTGRs. CR provides powerful, blood pressure-independent, protection against angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy. The findings support the notion of modulating cardiac bioenergetics to ameliorate angiotensin II-induced cardiovascular complications.
Related JoVE Video
Effects of levosimendan on cardiac gene expression profile and post-infarct cardiac remodelling in diabetic Goto-Kakizaki rats.
Basic Clin. Pharmacol. Toxicol.
PUBLISHED: 08-17-2011
Show Abstract
Hide Abstract
The calcium sensitizer levosimendan has shown beneficial effects on cardiac remodelling in spontaneously diabetic Goto-Kakizaki (GK) rats 12 weeks after experimental myocardial infarction (MI). However, the short-term effects and the cellular mechanisms remain partially unresolved. The aim was to study the effects of oral levosimendan treatment on the myocardial gene expression profile in diabetic GK rats 4 weeks after MI/sham operation. MI was induced to diabetic GK rats. Twenty-four hours after surgery, rats were randomized into four groups: MI, MI +levosimendan (1 mg/kg/day), sham-operated and sham-operated +levosimendan. Cardiac function and histology were examined 1, 4 and 12 weeks after MI. The effects of levosimendan on cardiac gene expression profile were investigated by microarray analysis. Levosimendan ameliorated post-infarct heart failure and cardiac remodelling. Levosimendan altered the expression of 264 of MI and sham rats, respectively; these changes were associated with alterations in two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Levosimendan up-regulated 3 genes in the renin-angiotensin system pathway [angiotensin receptor 1 (Agtr1), chymase 1 (Cma1) and thimet oligopeptidase 1 (Thop1)] and down-regulated 3 genes in the glycerolipid metabolism pathway [diacylglycerol kinase gamma (Dgkg), carboxyl ester lipase (Cel) and Diacylglycerol kinase iota]. Levosimendan induced opposite effects on the gene expression of pleckstrin homology (PH) domain containing family f (Plekhf1), carboxymethylenebutenolidase homologue (Cmbl) (up-regulation) and hydroxyprostaglandin dehydrogenase 15 (Hpgd) (down-regulation) as compared with MI. MI versus sham affected 420 genes and was associated with alterations in 12 KEGG pathways. The beneficial effects of levosimendan on cardiac hypertrophy in sham-operated GK rats was associated with altered expression in 522 genes and associated with three KEGG pathways including purine metabolism, cell cycle pathway and pathways in cancer. Levosimendan protects against post-infarct heart failure and cardiac remodelling. Analysis of the cardiac transcriptome revealed several genes that are regulated by levosimendan. These genes may represent novel drug targets for heart failure and diabetic cardiomyopathy.
Related JoVE Video
The effect of proatherogenic microbes on macrophage cholesterol homeostasis in apoE-deficient mice.
Microb. Pathog.
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
Pathogens such as Aggregatibacter actinomycetemcomitans (Aa) and Chlamydia pneumoniae (Cpn) associate with an increased risk for cardiovascular diseases by inducing inflammation. We hypothesized that the pathogens affect the vascular wall by disturbing cholesterol homeostasis and endothelial function.
Related JoVE Video
Skeletal muscle gene expression profile is modified by dietary protein source and calcium during energy restriction.
J Nutrigenet Nutrigenomics
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
The potential of whey protein and calcium to modify skeletal muscle gene expression during energy restriction (ER) was investigated in a model of diet-induced obesity.
Related JoVE Video
Distinct effects of calorie restriction and resveratrol on diet-induced obesity and Fatty liver formation.
J Nutr Metab
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
The potential of resveratrol to mimic beneficial effects of calorie restriction (CR) was investigated. We compared the effects of both CR (70% of ad libitum energy intake) or resveratrol (2?g/kg or 4?g/kg food) on high-fat diet-induced obesity and fatty liver formation in C57Bl/6J mice, and we examined their effects on calorimetry, metabolic performance, and the expressions of inflammatory genes and SIRT proteins. We found that resveratrol with 4?g/kg dose partially prevented hepatic steatosis and hepatocyte ballooning and induced skeletal muscle SIRT1 and SIRT4 expression while other examined parameter were unaffected by resveratrol. In contrast, CR provided superior protection against diet-induced obesity and fatty liver formation as compared to resveratrol, and the effects were associated with increased physical activity and ameliorated adipose tissue inflammation. CR increased expressions of SIRT3 in metabolically important tissues, suggesting that the beneficial effects of CR are mediated, at least in part, via SIRT3-dependent pathways.
Related JoVE Video
Dehydroepiandrosterone fatty acyl esters in high density lipoprotein: interaction with human vascular endothelial cells and vascular responses ex vivo.
Steroids
PUBLISHED: 10-13-2010
Show Abstract
Hide Abstract
Dehydroepiandrosterone (DHEA) fatty acyl esters once incorporated in high density lipoprotein (HDL) induce a stronger vasodilatory response in rat mesenteric arteries ex vivo compared to native HDL. We studied the role of HDL receptor, scavenger receptor class B, type 1 (SR-B1), as well as estrogen and androgen receptors in the vasodilatory response of HDL-associated DHEA fatty acyl esters. Using cultured human vascular endothelial cells (HUVEC), we investigated the possible internalization and cellular response of HDL-associated DHEA esters. We prepared DHEA ester-enriched HDL by incubating human plasma in the presence of DHEA. After isolation and purification, HDL was added in cumulative doses to arterial rings precontracted with noradrenaline. Inhibition of the function of SR-B1 almost completely abolished maximal vasorelaxation by DHEA-enriched HDL while estrogen or androgen receptor blockage had no significant effect. When HUVECs were incubated in the presence of [³H]DHEA ester-enriched HDL, the amount of intracellular [³H]-radioactivity increased steadily during 24 h. Blocking of SR-B1 reduced this uptake by a mean of 30%. The proportion of unesterified [³H]DHEA, as analyzed by thin-layer chromatography, increased intracellularly and in the cell culture media after several hours of incubation of the cells in the presence of [³H]DHEA ester-enriched HDL. This indicated slow hydrolysis of DHEA fatty acyl esters and subsequent excretion of unesterified DHEA by the cells. In conclusion, DHEA-enriched HDL induced vasorelaxation via the SR-B1-facilitated pathway. However, this vasodilation is not likely to be attributed to rapid hydrolysis of HDL-associated DHEA esters by the vascular endothelium.
Related JoVE Video
Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation.
Circulation
PUBLISHED: 10-11-2010
Show Abstract
Hide Abstract
Vascular endothelial growth factor-B (VEGF-B) binds to VEGF receptor-1 and neuropilin-1 and is abundantly expressed in the heart, skeletal muscle, and brown fat. The biological function of VEGF-B is incompletely understood.
Related JoVE Video
Novel regulators and drug targets of cardiac hypertrophy.
J. Hypertens.
PUBLISHED: 09-09-2010
Show Abstract
Hide Abstract
Cardiac hypertrophy is classically considered as an adaptive and compensatory response enabling cardiomyocytes to increase their work output and thus cardiac function. Biomechanical stress and neurohumoral activation are the most important triggers of pathological hypertrophy and the transition of cardiac hypertrophy to heart failure. Several novel regulators and putative drug targets of cardiac hypertrophy have been found by using gene-modified and acquired models of cardiac hypertrophy. Recent studies have also revealed distinct patterns of cardiac substrate utilization in cardiac hypertrophy and heart failure. The use of novel systems biology techniques such as metabolomics may therefore in future provide insights into the metabolic processes and cardiovascular biology related to cardiac hypertrophy and also extend the ability to discover circulating biomarkers for cardiovascular diseases. The present review discusses current knowledge on molecular mechanisms of cardiac hypertrophy, with special emphasis on novel regulators and putative drug targets of cardiac hypertrophy such as the tissue renin-angiotensin-aldosterone system, calcineurin/nuclear factor of activated T cells pathway, phosphatidylinositol 3-kinase/growth promoting protein kinase B, mammalian target of rapamycin, histone deacetylases, AMPkinases, microRNAs and angiogenetic factors.
Related JoVE Video
Levosimendan improves cardiac function and survival in rats with angiotensin II-induced hypertensive heart failure.
Hypertens. Res.
PUBLISHED: 09-02-2010
Show Abstract
Hide Abstract
Calcium-sensitizing agents improve cardiac function in acute heart failure; however, their long-term effects on cardiovascular mortality are unknown. We tested the hypothesis that levosimendan, an inodilator that acts through calcium sensitization, opening of ATP-dependent potassium channels and phosphodiesterase III inhibition, improves cardiac function and survival in double transgenic rats harboring human renin and angiotensinogen genes (dTGRs), a model of angiotensin II (Ang II)-induced hypertensive heart failure. Levosimendan (1?mg?kg(-1)) was administered orally to 4-week-old dTGRs and normotensive Sprague-Dawley rats for 4 weeks. Untreated dTGRs developed severe hypertension, cardiac hypertrophy, heart failure with impaired diastolic relaxation, and exhibited a high mortality rate at the age of 8 weeks. Levosimendan did not decrease blood pressure and did not prevent cardiac hypertrophy. However, levosimendan improved systolic function, decreased cardiac atrial natriuretic peptide mRNA expression, ameliorated Ang II-induced cardiac damage and decreased mortality. Levosimendan did not correct Ang II-induced diastolic dysfunction and did not influence heart rate. In a separate survival study, levosimendan increased dTGR survival by 58% and median survival time by 27% (P=0.004). Our findings suggest that levosimendan ameliorates Ang II-induced hypertensive heart failure and reduces mortality. The results also support the notion that the effects of levosimendan in dTGRs are mediated by blood pressure-independent mechanisms and include improved systolic function and amelioration of Ang II-induced coronary and cardiomyocyte damage.
Related JoVE Video
Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice.
Circ. J.
PUBLISHED: 06-04-2010
Show Abstract
Hide Abstract
Biological substances derived from perivascular fat modulate vascular tone, thus alterations in periadventitial adipose tissue (PVAT) may aggravate endothelial dysfunction in obesity.
Related JoVE Video
Caloric restriction reverses high-fat diet-induced endothelial dysfunction and vascular superoxide production in C57Bl/6 mice.
Heart Vessels
PUBLISHED: 05-29-2010
Show Abstract
Hide Abstract
Obesity is frequently associated with endothelial dysfunction. We hypothesized that high-fat feeding dysregulates the balance between endothelial derived nitric oxide and superoxide formation. Furthermore, we examined whether caloric restriction could reverse the detrimental vascular effects related to obesity. Male C57Bl/6 mice were fed with normal-fat diet (fat 17%) or high-fat diet (fat 60%) for 150 days. After establishment of obesity at day 100, a subgroup of obese mice were put on caloric restriction (CR) (70% of ad libitum energy intake) for an additional 50 days. At day 100, aortic rings from obese mice receiving high-fat diet showed impaired endothelium-dependent vasodilation in response to acetylcholine (ACh). Caloric restriction reversed high-fat diet-induced endothelial dysfunction. At day 150, impaired vasodilatory responses to ACh in obese mice without caloric restriction were markedly improved by preincubation with the tetrahydrobiopterin (BH(4)) precursor sepiapterin and L-arginine, a substrate for endothelial nitric oxide synthase (eNOS). Additionally, inhibition of vascular arginase by L-norvaline partially, and superoxide scavenging by Tiron completely, restored endothelial cell function. Obese mice showed increased vascular superoxide production, which was diminished by endothelial denudation, pretreated of the vascular rings with apocynin (an inhibitor of reduced nicotinamide adenine dinucleotide phosphate [NADPH] oxidase), oxypurinol (an inhibitor of xanthine oxidase), N(G)-nitro-L-arginine methyl ester (LNAME; an inhibitor of eNOS), or by adding the BH(4) precursor sepiapterin. Caloric restriction markedly attenuated vascular superoxide production. In obese mice on CR, endothelial denudation increased superoxide formation whereas vascular superoxide production was unaffected by L-NAME. Western blot analysis revealed decreased phosphorylated eNOS (Ser1177)-to-total eNOS expression ratio in obese mice as compared to lean controls, whereas the phospho-eNOS/NOS ratio in obese mice on CR did not differ from the lean controls. In conclusion, the present study suggests that caloric restriction reverses obesity induced endothelial dysfunction and vascular oxidative stress, and underscores the importance of uncoupled eNOS in the pathogenesis.
Related JoVE Video
Resveratrol induces mitochondrial biogenesis and ameliorates Ang II-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes.
Blood Press.
PUBLISHED: 05-01-2010
Show Abstract
Hide Abstract
There is compelling evidence to indicate an important role for increased local renin-angiotensin system activity in the pathogenesis of cardiac hypertrophy and heart failure. Resveratrol is a natural polyphenol that activates SIRT1, a novel cardioprotective and longevity factor having NAD(+)-dependent histone deacetylase activity. We tested the hypothesis whether resveratrol could prevent from angiotensin II (Ang II)-induced cardiovascular damage. Four-week-old double transgenic rats harboring human renin and human angiotensinogen genes (dTGR) were treated for 4 weeks either with SIRT1 activator resveratrol or SIRT1 inhibitor nicotinamide. Untreated dTGR and their normotensive Sprague-Dawley control rats (SD) received vehicle. Untreated dTGR developed severe hypertension as well as cardiac hypertrophy, and showed pronounced cardiovascular mortality compared with normotensive SD rats. Resveratrol slightly but significantly decreased blood pressure, ameliorated cardiac hypertrophy and prevented completely Ang II-induced mortality, whereas nicotinamide increased blood pressure without significantly influencing cardiac hypertrophy or survival. Resveratrol decreased cardiac ANP mRNA expression and induced cardiac mRNA expressions of mitochondrial biogenesis markers peroxisome proliferator-activated receptor-gamma coactivator (PGC-1alpha), mitochondrial transcription factor (Tfam), nuclear respiratory factor 1 (NRF-1) and cytochrome c oxidase subunit 4 (cox4). Resveratrol dose-dependently increased SIRT1 activity in vitro. Our findings suggest that the beneficial effects of SIRT1 activator resveratrol on Ang II-induced cardiac remodeling are mediated by blood pressure-dependent pathways and are linked to increased mitochondrial biogenesis.
Related JoVE Video
Effects of the calcium sensitizer OR-1896, a metabolite of levosimendan, on post-infarct heart failure and cardiac remodelling in diabetic Goto-Kakizaki rats.
Br. J. Pharmacol.
PUBLISHED: 04-24-2010
Show Abstract
Hide Abstract
Levosimendan is a novel, short half-life calcium sensitizer used as pharmacological inotropic support in acute decompensated heart failure. After oral administration, levosimendan is metabolized to OR-1855, which, in rats, is further metabolized into OR-1896. OR-1896 is a long-lasting metabolite of levosimendan sharing the pharmacological properties of the parent compound.
Related JoVE Video
Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat.
Cardiovasc Diabetol
PUBLISHED: 01-27-2010
Show Abstract
Hide Abstract
Diabetes is associated with changes in myocardial stress-response pathways and is recognized as an independent risk factor for cardiac remodeling. Using spontaneously diabetic Goto Kakizaki rats as a model of type 2 DM we investigated whether post-translational modifications in the Akt - FOXO3a pathway, Sirt1 - p53 pathway and the mitogen activated protein kinase p38 regulator are involved in post-infarct cardiac remodeling
Related JoVE Video
Metabolomics in angiotensin II-induced cardiac hypertrophy.
Hypertension
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
Angiotensin II (Ang II) induces mitochondrial dysfunction. We tested whether Ang II alters the "metabolomic" profile. We harvested hearts from 8-week-old double transgenic rats harboring human renin and angiotensinogen genes (dTGRs) and controls (Sprague-Dawley), all with or without Ang II type 1 receptor (valsartan) blockade. We used gas chromatography coupled with time-of-flight mass spectrometry to detect 247 intermediary metabolites. We used a partial least-squares discriminate analysis and identified 112 metabolites that differed significantly after corrections (false discovery rate q <0.05). We found great differences in the use of fatty acids as an energy source, namely, decreased levels of octanoic, oleic, and linoleic acids in dTGR (all P<0.01). The increase in cardiac hypoxanthine levels in dTGRs suggested an increase in purine degradation, whereas other changes supported an increased ketogenic amino acid tyrosine level, causing energy production failure. The metabolomic profile of valsartan-treated dTGRs more closely resembled Sprague-Dawley rats than untreated dTGRs. Mitochondrial respiratory chain activity of cytochrome C oxidase was decreased in dTGRs, whereas complex I and complex II were unaltered. Mitochondria from dTGR hearts showed morphological alterations suggesting increased mitochondrial fusion. Cardiac expression of the redox-sensitive and the cardioprotective metabolic sensor sirtuin 1 was increased in dTGRs. Interestingly, valsartan changed the level of 33 metabolites and induced mitochondrial biogenesis in Sprague-Dawley rats. Thus, distinct patterns of cardiac substrate use in Ang II-induced cardiac hypertrophy are associated with mitochondrial dysfunction. The finding underscores the importance of Ang II in the regulation of mitochondrial biogenesis and cardiac metabolomics, even in healthy hearts.
Related JoVE Video
Oral levosimendan prevents postinfarct heart failure and cardiac remodeling in diabetic Goto-Kakizaki rats.
J. Hypertens.
PUBLISHED: 09-05-2009
Show Abstract
Hide Abstract
Diabetes increases the risk for fatal myocardial infarction and development of heart failure. Levosimendan, an inodilator acting both via calcium sensitization and opening of ATP-dependent potassium channels, is used intravenously for acute decompensated heart failure. The long-term effects of oral levosimendan on postinfarct heart failure are largely unknown.
Related JoVE Video
Effects of high-calcium diets with different whey proteins on weight loss and weight regain in high-fat-fed C57BL/6J mice.
Br. J. Nutr.
PUBLISHED: 07-23-2009
Show Abstract
Hide Abstract
The aim of the study was to compare the effect of different whey protein-containing high-Ca diets on weight loss and weight regain in a model of diet-induced obesity. Obesity was induced in C57BL/6J mice with a high-fat (60 % of energy) diet. Weight loss by energy restriction was performed on four different high-Ca diets (1.8 % CaCO3) containing different whey proteins (18 % of energy): alpha-lactalbumin (ALA), beta-lactoglobulin (BLG), lactoferrin (LF) and whey protein isolate (WPI). After 7 weeks of energy restriction some of the mice were killed and the rest were fed with the same diets ad libitum for 7 weeks. The mice on the LF diet lost significantly more weight than mice on the WPI diet. The body fat content in the ALA and LF groups was significantly lower than in the WPI group (P < 0.05) and the LF group differed significantly even from the BLG group (P < 0.05). Ad libitum feeding after weight loss resulted in weight regain in all groups and only the ALA diet significantly reduced fat accumulation during weight regain. The weight regain was most pronounced in the LF group, but the adipocyte size was still significantly smaller than in the other groups. There were no differences in food intake or apparent fat digestibility between the groups. It can be concluded that a high-Ca diet with ALA significantly improves the outcome of weight loss and subsequent weight regain during the feeding of a high-fat diet in C57BL/6J mice, in comparison with WPI.
Related JoVE Video
Milk Products Containing Bioactive Tripeptides Have an Antihypertensive Effect in Double Transgenic Rats (dTGR) Harbouring Human Renin and Human Angiotensinogen Genes.
J Nutr Metab
PUBLISHED: 07-13-2009
Show Abstract
Hide Abstract
Tripeptides isoleucyl-prolyl-proline (IPP) and valyl-prolyl-proline (VPP) act as ACE inhibitors in vitro. Double transgenic rats (dTGR) harbouring human renin and human angiotensinogen genes develop malignant hypertension due to increased angiotensin II formation. The present study was aimed to evaluate possible antihypertensive effect of IPP and VPP in this severe model. Four-week-old dTGR were randomized in three groups to receive: (1) water (control), (2) fermented milk containing IPP and VPP, and (3) IPP and VPP dissolved in water for three weeks. Fermented milk, but not peptides in water, attenuated the development of hypertension in dTGR by 19 mmHg versus the control group (P = .023). In vitro vascular function tests showed that high concentrations of the peptides evinced ACE inhibitory properties. In other hypertension related variables, no significant differences between the treatment groups were found. In conclusion, fermented milk product containing IPP and VPP prevents development of malignant hypertension in an animal model.
Related JoVE Video
Rosuvastatin protects against angiotensin II-induced renal injury in a dose-dependent fashion.
J. Hypertens.
PUBLISHED: 03-06-2009
Show Abstract
Hide Abstract
We showed earlier that statin treatment ameliorates target-organ injury in a transgenic model of angiotensin (Ang) II-induced hypertension. We now test the hypothesis that rosuvastatin (1, 10, and 50 mg/kg/day) influences leukocyte adhesion and infiltration, prevents induction of inducible nitric oxide synthase (iNOS), and ameliorates target-organ damage in a dose-dependent fashion.
Related JoVE Video
HDL-associated dehydroepiandrosterone fatty acyl esters: enhancement of vasodilatory effect of HDL.
Steroids
PUBLISHED: 03-03-2009
Show Abstract
Hide Abstract
Dehydroepiandrosterone (DHEA) and high-density lipoprotein (HDL) are both vascular relaxants. In the circulation, HDL transports DHEA fatty acyl esters (DHEA-FAEs), which are naturally occurring lipophilic derivatives of DHEA. We studied in isolated rat mesenteric arteries whether HDL-associated DHEA-FAE improves the vasodilatory effect of HDL.
Related JoVE Video
The MIF receptor CD74 in diabetic podocyte injury.
J. Am. Soc. Nephrol.
PUBLISHED: 02-27-2009
Show Abstract
Hide Abstract
Although metabolic derangement plays a central role in diabetic nephropathy, a better understanding of secondary mediators of injury may lead to new therapeutic strategies. Expression of macrophage migration inhibitory factor (MIF) is increased in experimental diabetic nephropathy, and increased tubulointerstitial mRNA expression of its receptor, CD74, has been observed in human diabetic nephropathy. Whether CD74 transduces MIF signals in podocytes, however, is unknown. Here, we found glomerular and tubulointerstitial CD74 mRNA expression to be increased in Pima Indians with type 2 diabetes and diabetic nephropathy. Immunohistochemistry confirmed the increased glomerular and tubular expression of CD74 in clinical and experimental diabetic nephropathy and localized glomerular CD74 to podocytes. In cultured human podocytes, CD74 was expressed at the cell surface, was upregulated by high concentrations of glucose and TNF-alpha, and was activated by MIF, leading to phosphorylation of extracellular signal-regulated kinase 1/2 and p38. High glucose also induced CD74 expression in a human proximal tubule cell line (HK2). In addition, MIF induced the expression of the inflammatory mediators TRAIL and monocyte chemoattractant protein 1 in podocytes and HK2 cells in a p38-dependent manner. These data suggest that CD74 acts as a receptor for MIF in podocytes and may play a role in the pathogenesis of diabetic nephropathy.
Related JoVE Video
Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice.
Nutr Metab (Lond)
Show Abstract
Hide Abstract
Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR).
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.