JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.
J. Clin. Invest.
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort.
Related JoVE Video
Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation.
PLoS Biol.
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Type I interferons (IFNs) play an important role in direct antiviral defense as well as linking the innate and adaptive immune responses. On dendritic cells (DCs), IFNs facilitate their activation and contribute to CD8(+) and CD4(+) T cell priming. However, the precise molecular mechanism by which IFNs regulate maturation and immunogenicity of DCs in vivo has not been studied in depth. Here we show that, after in vivo stimulation with the TLR ligand poly IC, IFNs dominate transcriptional changes in DCs. In contrast to direct TLR3/mda5 signaling, IFNs are required for upregulation of all pathways associated with DC immunogenicity. In addition, metabolic pathways, particularly the switch from oxidative phosphorylation to glycolysis, are also regulated by IFNs and required for DC maturation. These data provide evidence for a metabolic reprogramming concomitant with DC maturation and offer a novel mechanism by which IFNs modulate DC maturation.
Related JoVE Video
Myeloid Dendritic Cells Induce HIV-1 Latency in Non-proliferating CD4(+) T Cells.
PLoS Pathog.
PUBLISHED: 12-01-2013
Show Abstract
Hide Abstract
Latently infected resting CD4(+) T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+) T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+) T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+) T cells. Gene expression in non-proliferating CD4(+) T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-?B and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+) T cells, which is predominantly mediated through signalling during DC-T cell contact.
Related JoVE Video
Human circulating PD-?1CXCR3?CXCR5? memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses.
Immunity
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
The vast majority of currently licensed human vaccines work on the basis of long-term protective antibody responses. It is now conceivable that an antibody-dependent HIV vaccine might be possible, given the discovery of HIV broadly neutralizing antibodies (bnAbs) in some HIV-infected individuals. However, these antibodies are difficult to develop and have characteristics indicative of a high degree of affinity maturation in germinal centers (GCs). CD4? T follicular helper (Tfh) cells are specialized for B cell help and necessary for GCs. Therefore, the development of HIV bnAbs might depend on Tfh cells. Here, we identified in normal individuals a subpopulation of circulating memory PD-1?CXCR5?CD4? T cells that are resting memory cells most related to bona fide GC Tfh cells by gene expression profile, cytokine profile, and functional properties. Importantly, the frequency of these cells correlated with the development of bnAbs against HIV in a large cohort of HIV? individuals.
Related JoVE Video
Systems analysis of a RIG-I agonist inducing broad spectrum inhibition of virus infectivity.
PLoS Pathog.
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
The RIG-I like receptor pathway is stimulated during RNA virus infection by interaction between cytosolic RIG-I and viral RNA structures that contain short hairpin dsRNA and 5 triphosphate (5ppp) terminal structure. In the present study, an RNA agonist of RIG-I was synthesized in vitro and shown to stimulate RIG-I-dependent antiviral responses at concentrations in the picomolar range. In human lung epithelial A549 cells, 5pppRNA specifically stimulated multiple parameters of the innate antiviral response, including IRF3, IRF7 and STAT1 activation, and induction of inflammatory and interferon stimulated genes - hallmarks of a fully functional antiviral response. Evaluation of the magnitude and duration of gene expression by transcriptional profiling identified a robust, sustained and diversified antiviral and inflammatory response characterized by enhanced pathogen recognition and interferon (IFN) signaling. Bioinformatics analysis further identified a transcriptional signature uniquely induced by 5pppRNA, and not by IFN?-2b, that included a constellation of IRF7 and NF-kB target genes capable of mobilizing multiple arms of the innate and adaptive immune response. Treatment of primary PBMCs or lung epithelial A549 cells with 5pppRNA provided significant protection against a spectrum of RNA and DNA viruses. In C57Bl/6 mice, intravenous administration of 5pppRNA protected animals from a lethal challenge with H1N1 Influenza, reduced virus titers in mouse lungs and protected animals from virus-induced pneumonia. Strikingly, the RIG-I-specific transcriptional response afforded partial protection from influenza challenge, even in the absence of type I interferon signaling. This systems approach provides transcriptional, biochemical, and in vivo analysis of the antiviral efficacy of 5pppRNA and highlights the therapeutic potential associated with the use of RIG-I agonists as broad spectrum antiviral agents.
Related JoVE Video
Impaired T-cell responses to sphingosine-1-phosphate in HIV-1 infected lymph nodes.
Blood
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
The determinants of HIV-1-associated lymphadenopathy are poorly understood. We hypothesized that lymphocytes could be sequestered in the HIV-1+ lymph node (LN) through impairments in sphingosine-1-phosphate (S1P) responsiveness. To test this hypothesis, we developed novel assays for S1P-induced Akt phosphorylation and actin polymerization. In the HIV-1+ LN, naïve CD4 T cells and central memory CD4 and CD8 T cells had impaired Akt phosphorylation in response to S1P, whereas actin polymerization responses to S1P were impaired dramatically in all LN maturation subsets. These defects were improved with antiretroviral therapy. LN T cells expressing CD69 were unable to respond to S1P in either assay, yet impaired S1P responses were also seen in HIV-1+ LN T cells lacking CD69 expression. Microbial elements, HIV-1, and interferon ? - putative drivers of HIV-1 associated immune activation all tended to increase CD69 expression and reduce T-cell responses to S1P in vitro. Impairment in T-cell egress from lymph nodes through decreased S1P responsiveness may contribute to HIV-1-associated LN enlargement and to immune dysregulation in a key organ of immune homeostasis.
Related JoVE Video
Inadequate T follicular cell help impairs B cell immunity during HIV infection.
Nat. Med.
PUBLISHED: 01-28-2013
Show Abstract
Hide Abstract
The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)(+) germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1-PD-L1 interaction in regulating TFH cell function. In fact, we show that engagement of PD-1 on TFH cells leads to a reduction in cell proliferation, activation, inducible T-cell co-stimulator (ICOS) expression and interleukin-21 (IL-21) cytokine secretion. Blocking PD-1 signaling enhances HIV-specific immunoglobulin production in vitro. We further show that at least part of this defect involves IL-21, as addition of this cytokine rescues antibody responses and plasma cell generation in vitro. Our results suggest that deregulation of TFH cell-mediated B cell help diminishes B cell responses during HIV infection and may be related to PD-1 triggering on TFH cells. These results demonstrate a role for TFH cell impairment in HIV pathogenesis and suggest that enhancing their function could have a major impact on the outcome and control of HIV infection, preventing future infections and improving immune responses to vaccinations.
Related JoVE Video
Down-regulation of CTLA-4 by HIV-1 Nef protein.
PLoS ONE
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
HIV-1 Nef protein down-regulates several cell surface receptors through its interference with the cell sorting and trafficking machinery. Here we demonstrate for the first time the ability of Nef to down-regulate cell surface expression of the negative immune modulator CTLA-4. Down-regulation of CTLA-4 required the Nef motifs DD175, EE155 and LL165, all known to be involved in vesicle trafficking. Disruption of the lysosomal functions by pH-neutralizing agents prevented CTLA-4 down-regulation by Nef, demonstrating the implication of the endosomal/lysosomal compartments in this process. Confocal microscopy experiments visualized the co-localization between Nef and CTLA-4 in the early and recycling endosomes but not at the cell surface. Overall, our results provide a novel mechanism by which HIV-1 Nef interferes with the surface expression of the negative regulator of T cell activation CTLA-4. Down-regulation of CTLA-4 may contribute to the mechanisms by which HIV-1 sustains T cell activation, a critical step in viral replication and dissemination.
Related JoVE Video
Antibodies to gp120 and PD-1 expression on virus-specific CD8+ T cells in protection from simian AIDS.
J. Virol.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
We compared the relative efficacies against simian immunodeficiency virus (SIV) challenge of three vaccine regimens that elicited similar frequencies of SIV-specific CD4(+) and CD8(+) T-cell responses but differed in the level of antibody responses to the gp120 envelope protein. All macaques were primed with DNA plasmids expressing SIV gag, pol, env, and Retanef genes and were boosted with recombinant modified vaccinia Ankara virus (MVA) expressing the same genes, either once (1 × MVA) or twice (2 × MVA), or were boosted once with MVA followed by a single boost with replication-competent adenovirus (Ad) type 5 host range mutant (Ad5 h) expressing SIV gag and nef genes but not Retanef or env (1 × MVA/Ad5). While two of the vaccine regimens (1 × MVA and 1 × MVA/Ad5) protected from high levels of SIV replication only during the acute phase of infection, the 2 × MVA regimen, with the highest anti-SIV gp120 titers, protected during the acute phase and transiently during the chronic phase of infection. Mamu-A*01 macaques of this third group exhibited persistent Gag CD8(+)CM9(+) effector memory T cells with low expression of surface Programmed death-1 (PD-1) receptor and high levels of expression of genes associated with major histocompatibility complex class I (MHC-I) and MHC-II antigen. The fact that control of SIV replication was associated with both high titers of antibodies to the SIV envelope protein and durable effector SIV-specific CD8(+) T cells suggests the hypothesis that the presence of antibodies at the time of challenge may increase innate immune recruiting activity by enhancing antigen uptake and may result in improvement of the quality and potency of secondary SIV-specific CD8(+) T-cell responses.
Related JoVE Video
Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques.
J. Clin. Invest.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
HIV infection results in gastrointestinal (GI) tract damage, microbial translocation, and immune activation, which are not completely ameliorated with suppression of viremia by antiretroviral (ARV) therapy. Furthermore, increased morbidity and mortality of ARV-treated HIV-infected individuals is associated with these dysfunctions. Thus, to enhance GI tract physiology, we treated SIV-infected pigtail macaques with ARVs, probiotics, and prebiotics or with ARVs alone. This synbiotic treatment resulted in increased frequency and functionality of GI tract APCs, enhanced reconstitution and functionality of CD4+ T cells, and reduced fibrosis of lymphoid follicles in the colon. Thus, ARV synbiotic supplementation in HIV-infected individuals may improve GI tract immunity and thereby mitigate inflammatory sequelae, ultimately improving prognosis.
Related JoVE Video
BCL-2 inhibitors sensitize therapy-resistant chronic lymphocytic leukemia cells to VSV oncolysis.
Mol. Ther.
PUBLISHED: 01-11-2013
Show Abstract
Hide Abstract
Many primary cancers including chronic lymphocytic leukemia (CLL) are resistant to vesicular stomatitis virus (VSV)-induced oncolysis due to overexpression of the antiapoptotic and antiautophagic members of the B-cell lymphoma-2 (BCL-2) family. In the present study, we investigated the mechanisms of CLL cell death induced as a consequence of VSV infection in the presence of BCL-2 inhibitors, obatoclax, and ABT-737 in primary ex vivo CLL patient samples. Microarray analysis of primary CD19? CD5? CLL cells treated with obatoclax and VSV revealed changes in expression of genes regulating apoptosis, the mechanistic target of rapamycin (mTOR) pathway, and cellular metabolism. A combined therapeutic effect was observed for VSV and BCL-2 inhibitors in cells from untreated patients and from patients unresponsive to standard of care therapy. In addition, combination treatment induced several markers of autophagy--LC3-II accumulation, p62 degradation, and staining of autophagic vacuoles. Inhibition of early stage autophagy using 3-methyladenine (3-MA) led to increased apoptosis in CLL samples. Mechanistically, a combination of BCL-2 inhibitors and VSV disrupted inhibitory interactions of Beclin-1 with BCL-2 and myeloid cell leukemia-1 (MCL-1), thus biasing cells toward autophagy. We propose a mechanism in which changes in cellular metabolism, coupled with pharmacologic disruption of the BCL-2-Beclin-1 interactions, facilitate induction of apoptosis and autophagy to mediate the cytolytic effect of VSV.
Related JoVE Video
Intrinsic role of FoxO3a in the development of CD8+ T cell memory.
J. Immunol.
PUBLISHED: 01-02-2013
Show Abstract
Hide Abstract
CD8(+) T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8(+) T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8(+) T cells are not clear. We show in this study that the transcription factor, FoxO3a, does not influence Ag presentation and the consequent expansion of CD8(+) T cell response during Listeria monocytogenes infection, but plays a key role in the maintenance of memory CD8(+) T cells. The effector function of primed CD8(+) T cells as revealed by cytokine secretion and CD107a degranulation was not influenced by inactivation of FoxO3a. Interestingly, FoxO3a-deficient CD8(+) T cells displayed reduced expression of proapoptotic molecules BIM and PUMA during the various phases of response, and underwent reduced apoptosis in comparison with wild-type cells. A higher number of memory precursor effector cells and memory subsets was detectable in FoxO3a-deficient mice compared with wild-type mice. Furthermore, FoxO3a-deficient memory CD8(+) T cells upon transfer into normal or RAG1-deficient mice displayed enhanced survival. These results suggest that FoxO3a acts in a cell-intrinsic manner to regulate the survival of primed CD8(+) T cells.
Related JoVE Video
Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans.
J. Exp. Med.
PUBLISHED: 11-07-2011
Show Abstract
Hide Abstract
Adjuvants are critical for the success of vaccines. Agonists of microbial pattern recognition receptors (PRRs) are promising new adjuvant candidates. A mechanism through which adjuvants enhance immune responses is to stimulate innate immunity. We studied the innate immune response in humans to synthetic double-stranded RNA (polyinosinic:polycytidylic acid [poly IC] stabilized with poly-L-lysine [poly ICLC]), an agonist for toll-like receptor (TLR) 3, and the cytosolic RNA helicase MDA-5. Transcriptional analysis of blood samples from eight volunteers, after subcutaneous administration of poly ICLC, showed up-regulation of genes involved in multiple innate immune pathways in all subjects, including interferon (IFN) and inflammasome signaling. Blocking type I IFN receptor ex vivo significantly dampened the response to poly IC. Comparative transcriptional analysis showed that several innate immune pathways were similarly induced in volunteers immunized with the highly efficacious yellow fever vaccine. Therefore, a chemically defined PRR agonist like poly ICLC can be a reliable and authentic microbial mimic for inducing innate immune responses in humans.
Related JoVE Video
Loss of memory B cells during chronic HIV infection is driven by Foxo3a- and TRAIL-mediated apoptosis.
J. Clin. Invest.
PUBLISHED: 05-27-2011
Show Abstract
Hide Abstract
Loss of memory B cells occurs from the onset of HIV-1 infection and persists into the chronic stages of infection. Lack of survival of these cells, even in subjects being treated, could primarily be the consequence of an altered local microenvironment induced by HIV infection. In this study we showed that memory B cell survival was significantly decreased in aviremic successfully treated (ST) subjects compared with subjects who control viral load as a result of natural immunity (elite controller [EC]) or with uninfected control (HIV-) subjects. The lower survival levels observed in memory B cells from ST subjects were the result of disrupted IL-2 signaling that led to increased transcriptional activity of Foxo3a and increased expression of its proapoptotic target TRAIL. Notably, memory B cell survival in ST subjects was significantly enhanced by the addition of exogenous IL-2 in a Foxo3a-dependent manner. We further showed that Foxo3a silencing by siRNA resulted in decreased expression of TRAIL and apoptosis levels in memory B cells from ST subjects. Our results thus establish a direct role for Foxo3a/TRAIL signaling in the persistence of memory B cells and provide a mechanism for the reduced survival of memory B cells during HIV infection. This knowledge could be exploited for the development of therapeutic and preventative HIV vaccines.
Related JoVE Video
Improved NYVAC-based vaccine vectors.
PLoS ONE
PUBLISHED: 04-29-2011
Show Abstract
Hide Abstract
While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-?B19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.
Related JoVE Video
Single-cell gene-expression profiling reveals qualitatively distinct CD8 T cells elicited by different gene-based vaccines.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Related JoVE Video
Formation of tungsten oxide nanostructures by laser pyrolysis: stars, fibres and spheres.
Nanoscale Res Lett
PUBLISHED: 02-23-2011
Show Abstract
Hide Abstract
In this letter, the production of multi-phase WO3 and WO3-x (where x could vary between 0.1 and 0.3) nanostructures synthesized by CO2-laser pyrolysis technique at varying laser wavelengths (9.22-10.82 mm) and power densities (17-110 W/cm2) is reported. The average spherical particle sizes for the wavelength variation samples ranged between 113 and 560 nm, and the average spherical particle sizes for power density variation samples ranged between 108 and 205 nm. Synthesis of W18O49 (= WO2.72) stars by this method is reported for the first time at a power density and wavelength of 2.2 kW/cm2 and 10.6 ?m, respectively. It was found that more concentrated starting precursors result in the growth of hierarchical structures such as stars, whereas dilute starting precursors result in the growth of simpler structures such as wires.
Related JoVE Video
Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors.
PLoS ONE
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Related JoVE Video
Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-13-2010
Show Abstract
Hide Abstract
Eradication of HIV-1 with highly active antiretroviral therapy (HAART) is not possible due to the persistence of long-lived, latently infected resting memory CD4(+) T cells. We now show that HIV-1 latency can be established in resting CD4(+) T cells infected with HIV-1 after exposure to ligands for CCR7 (CCL19), CXCR3 (CXCL9 and CXCL10), and CCR6 (CCL20) but not in unactivated CD4(+) T cells. The mechanism did not involve cell activation or significant changes in gene expression, but was associated with rapid dephosphorylation of cofilin and changes in filamentous actin. Incubation with chemokine before infection led to efficient HIV-1 nuclear localization and integration and this was inhibited by the actin stabilizer jasplakinolide. We propose a unique pathway for establishment of latency by direct HIV-1 infection of resting CD4(+) T cells during normal chemokine-directed recirculation of CD4(+) T cells between blood and tissue.
Related JoVE Video
PGE2 decreases reactivity of human platelets by activating EP2 and EP4.
Thromb. Res.
PUBLISHED: 02-17-2010
Show Abstract
Hide Abstract
Platelet hyperreactivity associates with cardiovascular events in humans. Studies in mice and humans suggest that prostaglandin E2 (PGE2) regulates platelet activation. In mice, activation of the PGE2 receptor subtype 3 (EP3) promotes thrombosis, but the significance of EP3 in humans is less well understood.
Related JoVE Video
Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection.
Nat. Med.
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
Viral replication and microbial translocation from the gut to the blood during HIV infection lead to hyperimmune activation, which contributes to the decline in CD4+ T cell numbers during HIV infection. Programmed death-1 (PD-1) and interleukin-10 (IL-10) are both upregulated during HIV infection. Blocking interactions between PD-1 and programmed death ligand-1 (PD-L1) and between IL-10 and IL-10 receptor (IL-10R) results in viral clearance and improves T cell function in animal models of chronic viral infections. Here we show that high amounts of microbial products and inflammatory cytokines in the plasma of HIV-infected subjects lead to upregulation of PD-1 expression on monocytes that correlates with high plasma concentrations of IL-10. Triggering of PD-1 expressed on monocytes by PD-L1 expressed on various cell types induced IL-10 production and led to reversible CD4+ T cell dysfunction. We describe a new function for PD-1 whereby microbial products inhibit T cell expansion and function by upregulating PD-1 levels and IL-10 production by monocytes after binding of PD-1 by PD-L1.
Related JoVE Video
Recovery following propofol-associated brugada electrocardiogram.
Pacing Clin Electrophysiol
PUBLISHED: 10-10-2009
Show Abstract
Hide Abstract
Brugada syndrome is a genetic disorder associated with an increased risk of sudden cardiac death that has typical electrocardiographic (ECG) patterns. Recently, there have been reports of Brugada ECG patterns seen in critically ill patients who received propofol,(1) and this pattern was associated with a very high imminent mortality. We report a case in which a critically ill patient developed a Brugada ECG pattern following high-dose propofol infusion. Once the ECG pattern was recognized, the propofol was discontinued and the ECG pattern resolved, and the patient was discharged home with no arrhythmic sequelae.
Related JoVE Video
Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production.
J. Exp. Med.
Show Abstract
Hide Abstract
In the present study, we have investigated the distribution of HIV-specific and HIV-infected CD4 T cells within different populations of memory CD4 T cells isolated from lymph nodes of viremic HIV-infected subjects. Four memory CD4 T cell populations were identified on the basis of the expression of CXCR5, PD-1, and Bcl-6: CXCR5(-)PD-1(-)Bcl-6(-), CXCR5(+)PD-1(-)Bcl-6(-), CXCR5(-)PD-1(+)Bcl-6(-), and CXCR5(+)PD-1(+)Bcl-6(+). On the basis of Bcl-6 expression and functional properties (IL-21 production and B cell help), the CXCR5(+)PD-1(+)Bcl-6(+) cell population was considered to correspond to the T follicular helper (Tfh) cell population. We show that Tfh and CXCR5(-)PD-1(+) cell populations are enriched in HIV-specific CD4 T cells, and these populations are significantly increased in viremic HIV-infected subjects as compared with healthy subjects. The Tfh cell population contained the highest percentage of CD4 T cells harboring HIV DNA and was the most efficient in supporting productive infection in vitro. Replication competent HIV was also readily isolated from Tfh cells in subjects with nonprogressive infection and low viremia (<1,000 HIV RNA copies). However, only the percentage of Tfh cells correlated with the levels of plasma viremia. These results demonstrate that Tfh cells serve as the major CD4 T cell compartment for HIV infection, replication, and production.
Related JoVE Video
Macular ultrastructural features in amblyopia using high-definition optical coherence tomography.
Br J Ophthalmol
Show Abstract
Hide Abstract
To study macular morphology in amblyopic eyes using high-definition spectral domain optical coherence tomography (SD-OCT) and to compare the findings with fellow eyes.
Related JoVE Video
Profound metabolic, functional, and cytolytic differences characterize HIV-specific CD8 T cells in primary and chronic HIV infection.
Blood
Show Abstract
Hide Abstract
Immediate-early host-virus interactions that occur during the first weeks after HIV infection have a major impact on disease progression. The mechanisms underlying the failure of HIV-specific CD8 T-cell response to persist and control viral replication early in infection are yet to be characterized. In this study, we performed a thorough phenotypic, gene expression and functional analysis to compare HIV-specific CD8 T cells in acutely and chronically infected subjects. We showed that HIV-specific CD8 T cells in primary infection can be distinguished by their metabolic state, rate of proliferation, and susceptibility to apoptosis. HIV-specific CD8 T cells in acute/early HIV infection secreted less IFN-? but were more cytotoxic than their counterparts in chronic infection. Importantly, we showed that the levels of IL-7R expression and the capacity of HIV-specific CD8 T cells to secrete IL-2 on antigenic restimulation during primary infection were inversely correlated with the viral set-point. Altogether, these data suggest an altered metabolic state of HIV-specific CD8 T cells in primary infection resulting from hyperproliferation and stress induced signals, demonstrate the discordant function of HIV-specific CD8 T cells during early/acute infection, and highlight the importance of T-cell maintenance for viral control.
Related JoVE Video
CD4 T follicular helper cell dynamics during SIV infection.
J. Clin. Invest.
Show Abstract
Hide Abstract
CD4 T follicular helper (TFH) cells interact with and stimulate the generation of antigen-specific B cells. TFH cell interaction with B cells correlates with production of SIV-specific immunoglobulins. However, the fate of TFH cells and their participation in SIV-induced antibody production is not well understood. We investigated the phenotype, function, location, and molecular signature of TFH cells in rhesus macaques. Similar to their human counterparts, TFH cells in rhesus macaques represented a heterogeneous population with respect to cytokine function. In a highly differentiated subpopulation of TFH cells, characterized by CD150lo expression, production of Th1 cytokines was compromised while IL-4 production was augmented, and cells exhibited decreased survival, cycling, and trafficking capacity. TFH cells exhibited a distinct gene profile that was markedly altered by SIV infection. TFH cells were infected by SIV; yet, in some animals, these cells actually accumulated during chronic SIV infection. Generalized immune activation and increased IL-6 production helped drive TFH differentiation during SIV infection. Accumulation of TFH cells was associated with increased frequency of activated germinal center B cells and SIV-specific antibodies. Therefore, chronic SIV does not disturb the ability of TFH cells to help B cell maturation and production of SIV-specific immunoglobulins.
Related JoVE Video
CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction.
PLoS Pathog.
Show Abstract
Hide Abstract
Chronic viral infections lead to persistent CD8 T cell activation and functional exhaustion. Expression of programmed cell death-1 (PD-1) has been associated to CD8 T cell dysfunction in HIV infection. Herein we report that another negative regulator of T cell activation, CD160, was also upregulated on HIV-specific CD8 T lymphocytes mostly during the chronic phase of infection. CD8 T cells that expressed CD160 or PD-1 were still functional whereas co-expression of CD160 and PD-1 on CD8 T cells defined a novel subset with all the characteristics of functionally exhausted T cells. Blocking the interaction of CD160 with HVEM, its natural ligand, increased HIV-specific CD8 T cell proliferation and cytokine production. Transcriptional profiling showed that CD160(-)PD-1(+)CD8 T cells encompassed a subset of CD8(+) T cells with activated transcriptional programs, while CD160(+)PD-1(+) T cells encompassed primarily CD8(+) T cells with an exhausted phenotype. The transcriptional profile of CD160(+)PD-1(+) T cells showed the downregulation of the NF?B transcriptional node and the upregulation of several inhibitors of T cell survival and function. Overall, we show that CD160 and PD-1 expressing subsets allow differentiating between activated and exhausted CD8 T cells further reinforcing the notion that restoration of function will require multipronged approaches that target several negative regulators.
Related JoVE Video
Foxo3a: an integrator of immune dysfunction during HIV infection.
Cytokine Growth Factor Rev.
Show Abstract
Hide Abstract
Chronic HIV infection, which is primarily characterized by the progressive depletion of total CD4(+) T cells, also causes persistent inflammation and immune activation. This is followed by profound changes in cellular and tissue microenvironments that often lead to prolonged immune dysfunction. The global nature of this immune dysfunction suggests that factors that are involved in immune cell survival, proliferation, differentiation and maturation are all affected. Of particular interest is the transcriptional factor Foxo3a that regulates a number of genes that are critical in the development and the maintenance of T and B cells, dendritic cells (DCs) and macrophages. Alterations in the microenvironment mediated by HIV infection cause significant increase in the transcriptional activity of Foxo3a; this has major impact on T cell and B cell immunity. In fact, recent findings from HIV infected individuals highlight three important points: (1) the alteration of Foxo3a signaling during HIV infection deregulates innate and adaptive immune responses; (2) Foxo3a-mediated effects are reversible and could be restored by interfering with the Foxo3a pathway; and (3) down-regulation of Foxo3a transcriptional activity in elite controllers (ECs) represents a molecular signature, or a correlate of immunity, associated with natural protection and lack of disease progression. In this review, we will discuss how HIV-infection altered microenvironments could result in impaired immune responses via the Foxo3a signaling pathway. Defining precisely the molecular mechanisms of how persistent inflammation and immune activation are able to influence the Foxo3a pathway could ultimately help in the development of novel approaches to improve immune responses in HIV infected subjects.
Related JoVE Video
Phosphodiesterase 5 inhibition protects against increased intra-abdominal pressure-induced renal dysfunction in experimental congestive heart failure.
Eur. J. Heart Fail.
Show Abstract
Hide Abstract
Congestive heart failure (CHF) is associated with impaired renal function. Previously, we have demonstrated that rats with decompensated CHF exhibited exaggerated sensitivity to the adverse renal effects of increased increased intra-abdominal pressure (IAP) as compared with normal controls. This study tested whether phosphodiesterase 5 (PDE5) inhibition protects against the adverse renal effects of increased IAP in rats with CHF.
Related JoVE Video
Middle fossa approach for resection of vestibular schwannoma: impact of cochlear fossa extension and auditory monitoring on hearing preservation.
Otol. Neurotol.
Show Abstract
Hide Abstract
To analyze the impact of patient selection and auditory monitoring on hearing results after middle fossa craniotomy approach for resection of a vestibular schwannoma (VS).
Related JoVE Video
Type I IFN induced by adenovirus serotypes 28 and 35 has multiple effects on T cell immunogenicity.
J. Immunol.
Show Abstract
Hide Abstract
Recombinant adenovirus (rAd) vectors are being investigated as vaccine delivery vehicles in preclinical and clinical studies. rAds constructed from different serotypes differ in receptor usage, tropism, and ability to activate cells, aspects of which likely contribute to their different immunogenicity profiles. In this study, we compared the infectivity and cell stimulatory capacity of recombinant adenovirus serotype 5 (rAd5), recombinant adenovirus serotype 28 (rAd28), and recombinant adenovirus serotype 35 (rAd35) in association with their respective immunogenicity profiles. We found that rAd28 and rAd35 infected and led to the in vitro maturation and activation of both human and mouse dendritic cells more efficiently compared with rAd5. In stark contrast to rAd5, rAd28 and rAd35 induced production of IFN-? and stimulated IFN-related intracellular pathways. However, the in vivo immunogenicity of rAd28 and rAd35 was significantly lower than that of rAd5. Deletion of IFN-? signaling during vaccination with rAd28 and rAd35 vectors increased the magnitude of the insert-specific T cell response to levels induced by vaccination with rAd5 vector. The negative impact of IFN-? signaling on the magnitude of the T cell response could be overcome by increasing the vaccine dose, which was also associated with greater polyfunctionality and a more favorable long-term memory phenotype of the CD8 T cell response in the presence of IFN-? signaling. Taken together, our results demonstrate that rAd-induced IFN-? production has multiple effects on T cell immunogenicity, the understanding of which should be considered in the design of rAd vaccine vectors.
Related JoVE Video
Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C.
PLoS ONE
Show Abstract
Hide Abstract
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.
Related JoVE Video
Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation.
J. Immunol.
Show Abstract
Hide Abstract
Follicular helper CD4 T (Tfh) cells provide B cells with signals that are important for the generation of high-affinity Abs and immunological memory and, therefore, are critical for the protective immunity elicited by most human vaccines. Transcriptional regulators of human Tfh cell differentiation are poorly understood. In this article, we demonstrate that Bcl6 controls specific gene modules for human Tfh cell differentiation. The introduction of Bcl6 expression in primary human CD4 T cells resulted in the regulation of a core set of migration genes that enable trafficking to germinal centers: CXCR4, CXCR5, CCR7, and EBI2. Bcl6 expression also induced a module of protein expression critical for T-B interactions, including SAP, CD40L, PD-1, ICOS, and CXCL13. This constitutes direct evidence for Bcl6 control of most of these functions and includes three genes known to be loci of severe human genetic immunodeficiencies (CD40L, SH2D1A, and ICOS). Introduction of Bcl6 did not alter the expression of IL-21 or IL-4, the primary cytokines of human Tfh cells. We show in this article that introduction of Maf (c-Maf) does induce the capacity to express IL-21. Surprisingly, Maf also induced CXCR5 expression. Coexpression of Bcl6 and Maf revealed that Bcl6 and Maf cooperate in the induction of CXCR4, PD-1, and ICOS. Altogether, these findings reveal that Bcl6 and Maf collaborate to orchestrate a suite of genes that define core characteristics of human Tfh cell biology.
Related JoVE Video
Virus inhibition activity of effector memory CD8(+) T cells determines simian immunodeficiency virus load in vaccinated monkeys after vaccine breakthrough infection.
J. Virol.
Show Abstract
Hide Abstract
The goal of an effective AIDS vaccine is to generate immunity that will prevent human immunodeficiency virus 1 (HIV-1) acquisition. Despite limited progress toward this goal, renewed optimism has followed the recent success of the RV144 vaccine trial in Thailand. However, the lack of complete protection in this trial suggests that breakthroughs, where infection occurs despite adequate vaccination, will be a reality for many vaccine candidates. We previously reported that neutralizing antibodies elicited by DNA prime-recombinant adenovirus serotype 5 (rAd5) boost vaccination with simian immunodeficiency virus strain mac239 (SIVmac239) Gag-Pol and Env provided protection against pathogenic SIVsmE660 acquisition after repeated mucosal challenge. Here, we report that SIV-specific CD8(+) T cells elicited by that vaccine lowered both peak and set-point viral loads in macaques that became infected despite vaccination. These SIV-specific CD8(+) T cells showed strong virus-inhibitory activity (VIA) and displayed an effector memory (EM) phenotype. VIA correlated with high levels of CD107a mobilization and perforin expression in SIV-specific CD8(+) T cells. Remarkably, both the frequency and the number of Gag CM9-specific public clonotypes were strongly correlated with VIA mediated by EM CD8(+) T cells. The ability to elicit such virus-specific EM CD8(+) T cells might contribute substantially to an efficacious HIV/AIDS vaccine, even after breakthrough infection.
Related JoVE Video
Suboptimal inhibition of platelet cyclooxygenase-1 by aspirin in metabolic syndrome.
Hypertension
Show Abstract
Hide Abstract
Interindividual variation in the ability of aspirin to inhibit platelet cyclooxygenase-1 (COX-1) could account for some on-treatment cardiovascular events. Here, we sought to determine whether there are clinical phenotypes that are associated with a suboptimal pharmacological effect of aspirin. In a prospective, 2-week study, we evaluated the effect of aspirin (81 mg) on platelet COX-1 in 135 patients with stable coronary artery disease by measuring serum thromboxane B(2) (sTxB(2)) as an indicator of inhibition of platelet COX-1. A nested randomized study compared enteric-coated with immediate-release formulations of aspirin. We found that sTxB(2) was systematically higher among the 83 patients with metabolic syndrome than among the 52 patients without (median: 4.0 versus 3.02 ng/mL; P=0.013). Twelve patients (14%) with metabolic syndrome, but none without metabolic syndrome, had sTxB(2) levels consistent with inadequate inhibition of COX (sTxB(2) ?13 ng/mL). In linear regression models, metabolic syndrome (but none of its individual components) significantly associated with higher levels of log-transformed sTxB(2) (P=0.006). Higher levels of sTxB(2) associated with greater residual platelet function measured by aggregometry-based methods. Among the randomized subset, sTxB(2) levels were systematically higher among patients receiving enteric-coated aspirin. Last, urinary 11-dehydro thromboxane B(2) did not correlate with sTxB(2), suggesting that the former should not be used to quantitate aspirins pharmacological effect on platelets. In conclusion, metabolic syndrome, which places patients at high risk for thrombotic cardiovascular events, strongly and uniquely associates with less effective inhibition of platelet COX-1 by aspirin.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.