JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
In silico modeling of the effects of alpha-synuclein oligomerization on dopaminergic neuronal homeostasis.
BMC Syst Biol
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
Alpha-synuclein (ASYN) is central in Parkinson's disease (PD) pathogenesis. Converging pieces of evidence suggest that the levels of ASYN expression play a critical role in both familial and sporadic Parkinson's disease. ASYN fibrils are the main component of inclusions called Lewy Bodies (LBs) which are found mainly in the surviving neurons of the substantia nigra. Despite the accumulated knowledge regarding the involvement of ASYN in molecular mechanisms underlying the development of PD, there is much information missing which prevents understanding the causes of the disease and how to stop its progression.
Related JoVE Video
Visualizing meta-features in proteomic maps.
BMC Bioinformatics
PUBLISHED: 07-28-2011
Show Abstract
Hide Abstract
The steps of a high-throughput proteomics experiment include the separation, differential expression and mass spectrometry-based identification of proteins. However, the last and more challenging step is inferring the biological role of the identified proteins through their association with interaction networks, biological pathways, analysis of the effect of post-translational modifications, and other protein-related information.
Related JoVE Video
Protein spot detection and quantification in 2-DE gel images using machine-learning methods.
Proteomics
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Two-dimensional gel electrophoresis (2-DE) is the most established protein separation method used in expression proteomics. Despite the existence of sophisticated software tools, 2-DE gel image analysis still remains a serious bottleneck. The low accuracies of commercial software packages and the extensive manual calibration that they often require for acceptable results show that we are far from achieving the goal of a fully automated and reliable, high-throughput gel processing system. We present a novel spot detection and quantification methodology which draws heavily from unsupervised machine-learning methods. Using the proposed hierarchical machine learning-based segmentation methodology reduces both the number of faint spots missed (improves sensitivity) and the number of extraneous spots introduced (improves precision). The detection and quantification performance has been thoroughly evaluated and is shown to compare favorably (higher F-measure) to a commercially available software package (PDQuest). The whole image analysis pipeline that we have developed is fully automated and can be used for high-throughput proteomics analysis since it does not require any manual intervention for recalibration every time a new 2-DE gel image is to be analyzed. Furthermore, it can be easily parallelized for high performance and also applied without any modification to prealigned group average gels.
Related JoVE Video
Prediction of biological integrity based on environmental similarity--revealing the scale-dependent link between study area and top environmental predictors.
Water Res.
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Indices of Biological integrity (IBI) are considered valid indicators of the overall health of a water body because the biological community is an endpoint within natural systems. However, prediction of biological integrity using information from multi-parameter environmental observations is a challenging problem due to the hierarchical organization of the natural environment, the existence of nonlinear inter-dependencies among variables as well as natural stochasticity and measurement noise. We present a method for predicting the Fish Index of Biological Integrity (IBI) using multiple environmental observations at the state-scale in Ohio. Instream (chemical and physical quality) and offstream parameters (regional and local upstream land uses, stream fragmentation, and point source density and intensity) are used for this purpose. The IBI predictions are obtained using the environmental site-similarity concept and following a simple to implement leave-one-out cross validation approach. An IBI prediction for a sampling site is calculated by averaging the observed IBI scores of observations clustered in the most similar branch of a dendrogram--a hierarchical clustering tree of environmental observations--built using the rest of the observations. The standardized Euclidean distance is used to assess dissimilarity between observations. The constructed predictive model was able to explain 61% of the IBI variability statewide. Stream fragmentation and regional land use explained 60% of the variability; the remaining 1% was explained by instream habitat quality. Metrics related to local land use, water quality, and point source density and intensity did not improve the predictive model at the state-scale. The impact of local environmental conditions was evaluated by comparing local characteristics between well- and mispredicted sites. Significant differences in local land use patterns and upstream fragmentation density explained some of the models over-predictions. Local land use conditions explained some of the models IBI under-predictions at the state-scale since none of the variables within this group were included in the best final predictive model. Under-predicted sites also had higher levels of downstream fragmentation. The proposed variables ranking and predictive modeling methodology is very well suited for the analysis of hierarchical environments, such as natural fresh water systems, with many cross-correlated environmental variables. It is computationally efficient, can be fully automated, does not make any pre-conceived assumptions on the variables interdependency structure (such as linearity), and it is able to rank variables in a database and generate IBI predictions using only non-parametric easy to implement hierarchical clustering.
Related JoVE Video
Improving 2-DE gel image denoising using contourlets.
Proteomics
PUBLISHED: 08-12-2009
Show Abstract
Hide Abstract
One of the most commonly used methods for protein separation is 2-DE. After 2-DE gel scanning, images with a plethora of spot features emerge that are usually contaminated by inherent noise. The objective of the denoising process is to remove noise to the extent that the true spots are recovered correctly and accurately i.e. without introducing distortions leading to the detection of false-spot features. In this paper we propose and justify the use of the contourlet transform as a tool for 2-DE gel images denoising. We compare its effectiveness with state-of-the-art methods such as wavelets-based multiresolution image analysis and spatial filtering. We show that contourlets not only achieve better average S/N performance than wavelets and spatial filters, but also preserve better spot boundaries and faint spots and alter less the intensities of informative spot features, leading to more accurate spot volume estimation and more reliable spot detection, operations that are essential to differential expression proteomics for biomarkers discovery.
Related JoVE Video
Linking indices of biotic integrity to environmental and land use variables: multimetric clustering and predictive models.
Water Sci. Technol.
PUBLISHED: 01-20-2009
Show Abstract
Hide Abstract
Advanced computerized methods and models of retrieving knowledge from large multiparameter data bases were used to analyze data on fish and macroinvertebrate composition (metrics), habitat, land use and water quality. The research focused on the north central and northeastern United States and involved thousands of sites monitored by the state agencies. The techniques and methodologies included supervised and unsupervised Artificial Neural Networks (ANN) modeling, Principal Component Analysis, Canonical Component Analysis (both linear and nonlinear), Multiple Regression Analyses, and analyses of variance by ANOVA. The research resulted in defining a concept of clusters of sites based on their biotic (fish) community composition, identified cluster dominating factors, and developed meaningful models for predicting fish composition based on environmental and in-stream habitat stresses.
Related JoVE Video
Proteomic feature maps: a new visualization approach in proteomics analysis.
J Biomed Inform
PUBLISHED: 01-05-2009
Show Abstract
Hide Abstract
The different steps of a proteomics analysis workflow generate a plethora of features for each extracted proteomic object (a protein spot in 2D gel electrophoresis (2-DE), or a peptide peak in liquid chromatography-mass spectrometry (LC-MS) analysis). Yet, the joint visualization of multiple object features on 2D gel-like maps is rather limited in currently available proteomics software packages. We introduce a new, simple, and intuitive visualization method that utilizes spheres to represent proteomic objects on proteomic feature maps, and exploits the spheres size and color to provide simultaneous visualization of user-selected feature pairs. Our contribution, a unified and flexible visualization mechanism that can be easily applied at any stage of a 2-DE or a LC-MS based differential proteomics study, is demonstrated and discussed using five representative scenarios. The joint visualization of proteomic object features and their spatial distribution is a powerful tool for inspecting and comparing the proteomics analysis results, attracting the users attention to useful information, such as differential expression trends and patterns, and even assisting in the evaluation and refinement of a proteomics experiment.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.