JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: A linkage with toxicity and oxidative stress.
Nanotoxicology
PUBLISHED: 10-18-2014
Show Abstract
Hide Abstract
Abstract This article reports novel results on the toxic mechanisms of action of amine- and hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimers toward microorganisms of environmental relevance, namely a cyanobacterium of the genus Anabaena and the green alga Chlamydomonas reinhardtii. We used PAMAM ethylenediamine core dendrimers from generations G2 to G4, which displayed a positive charge, measured as ?-potential, in culture media. All amine-terminated and most remarkably the G4 hydroxyl-terminated dendrimer inhibited the growth of both microorganisms. The effect on the growth of the green alga was significantly higher than that on the cyanobacterium. With concentrations expressed in terms of molarity, there was a clear relationship between dendrimer generation and toxicity, with higher toxicity for higher generation. Hormesis was observed for hydroxyl-terminated dendrimers at low concentrations. The cationic dendrimers and G4-OH significantly increased the formation of reactive oxygen species (ROS) in both organisms. ROS formation was not related with the chloroplast or photosynthetic membranes and photosystem II photochemistry was unaffected. Cell damage resulted in cytoplasm disorganization and cell deformities and was associated to an increase in ROS formation and lipid peroxidation in mitochondria in the green alga; cell wall and membrane disruption with apparent loss of cytoplasmic contents was found in the cyanobacterium. It was determined for the first time that cationic PAMAM dendrimers were quickly and largely internalized by both organisms. These results warn against the generalization of the use of dendrimers, which may pose significant risk for the environment and particularly for primary producers which are determinant for the health of natural ecosystems.
Related JoVE Video
A Colloidal Singularity Reveals the Crucial Role of Colloidal Stability for Nanomaterials In-Vitro Toxicity Testing: nZVI-Microalgae Colloidal System as a Case Study.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs.
Related JoVE Video
Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation.
J. Hazard. Mater.
PUBLISHED: 09-13-2013
Show Abstract
Hide Abstract
This article deals with the degradation of a third-generation (G3) poly(amidoamine) (PAMAM) dendrimer under ozonation and irradiation. The identification and quantification of G3 PAMAM dendrimer and its transformation products has been performed by liquid chromatography-electrospray ionization-hybrid quadrupole time-of-flight-mass spectrometry. The dendrimer was completely depleted by ozone in less than 1min. The effect of ultraviolet irradiation was attributed to hydroxyl-mediated oxidation. The transformation products were attributed to the oxidation of amines, which resulted in highly oxidized structures with abundance of carboxylic acids, which started from the formation of amine oxide and the scission of the CN bond of the amide group. We studied the toxicity of treated mixtures for six different organisms: the acute toxicity for the bacterium Vibrio fischeri and the microcrustacean Daphnia magna, the multigenerational growth inhibition of the alga Pseudokirchneriella subcapitata, and the seed germination phytotoxicity of Licopersicon esculentum, Lactuca sativa and Lolium perenne. Ozonation and irradiation originated transformation products are more toxic than the parent dendrimer. The toxicity of the dendrimer for the green alga was linked to a strong increase of intracellular reactive oxygen species with intense lipid peroxidation.
Related JoVE Video
Traumatic pseudoaneurysm of the superficial temporal artery: case report and review of the literature.
Oral Surg Oral Med Oral Pathol Oral Radiol
PUBLISHED: 08-11-2013
Show Abstract
Hide Abstract
Pseudoaneurysm of the superficial temporal artery is an uncommon complication of a blunt trauma. It usually presents as a pulsating mass in the frontotemporal area a few weeks after the injury. Doppler ultrasonography, angiography, or computed tomographic angiography can aid or confirm the diagnosis. The treatment of choice is the surgical resection of the pseudoaneurysm and ligation of the vessels. We report a case of a pseudoaneurysm of the frontal branch of the superficial temporal artery and review the literature.
Related JoVE Video
Review of secondary alveolar cleft repair.
Ann Maxillofac Surg
PUBLISHED: 05-11-2013
Show Abstract
Hide Abstract
The alveolar cleft is a bony defect that is present in 75% of the patients with cleft lip and palate. Although secondary alveolar cleft repair is commonly accepted for these patients, nowadays, controversy still remains regarding the surgical technique, the timing of the surgery, the donor site, and whether the use of allogenic materials improve the outcomes. The purpose of the present review was to evaluate the protocol, the surgical technique and the outcomes in a large population of patients with alveolar clefts that underwent secondary alveolar cleft repair.
Related JoVE Video
Rhytidectomy approach for mandibular reconstruction with microvascular free flaps after resection of mandibular benign tumors.
J. Oral Maxillofac. Surg.
PUBLISHED: 05-05-2013
Show Abstract
Hide Abstract
Microvascular surgery has become the preferred method for mandibular reconstruction. A neck incision frequently is required for malignant tumor resections to carry out the dissection. The authors suggest a rhytidectomy approach for mandibular reconstruction with microvascular free flaps after the resection of benign tumors.
Related JoVE Video
Identification and quantification of poly(amidoamine) PAMAM dendrimers of generations 0 to 3 by liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry in aqueous medium.
Rapid Commun. Mass Spectrom.
PUBLISHED: 03-16-2013
Show Abstract
Hide Abstract
Poly(amidoamine) PAMAM dendrimers are highly water soluble and are used as flexible scaffolding or nanocontainers to conjugate, complex or encapsulate therapeutic drugs to overcome intrinsically weak characteristics such as solubilization in aqueous medium. To provide a reliable method for the quantitation of PAMAM dendrimers in aqueous medium, we report here a validation study which was developed in a complex wastewater matrix to evaluate the matrix effect in the electrospray ionization (ESI) source.
Related JoVE Video
Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.
Water Res.
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 ?M ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments.
Related JoVE Video
Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated chemicals and lipid regulators.
Chemosphere
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
The toxicological interaction of perfluorooctane sulphonic acid (PFOS) with the chlorinated pollutants triclosan and 2,4,6-trichlorophenol and the lipid regulators gemfibrozil and bezafibrate was evaluated using the combination index-isobologram equation. The endpoint for bioassays was the growth rate inhibition of the green alga Pseudokirchneriella subcapitata. The results showed that most of the binary combinations assayed exhibited antagonism at all effect levels. The addition of a third component induced a less antagonistic or even synergistic behaviour. This was particularly marked for the ternary mixture of triclosan and 2,4,6-trichlorophenol with PFOS, for which synergism was very strong at all effect levels, with a combination index as low as 0.034 ± 0.002 at EC(50) for the mixture. The results obtained indicate that the evaluation of mixture toxicity from single component data using the concentration addition approach could severely underestimate combined toxicity.
Related JoVE Video
Oxidation by-products and ecotoxicity assessment during the photodegradation of fenofibric acid in aqueous solution with UV and UV/H2O2.
J. Hazard. Mater.
PUBLISHED: 04-29-2011
Show Abstract
Hide Abstract
The degradation of an aqueous solution of fenofibric acid was investigated using ultraviolet (UV) photolysis and UV/H(2)O(2) with a low-pressure mercury lamp. We obtained quantum yields at different temperatures and the rate constant for the reaction of fenofibric acid with hydroxyl radicals. The maximum radical exposure per fluence ratio obtained was 1.4 × 10(-10)ML(-1)mW(-1). Several reaction intermediates were detected by means of exact mass measurements performed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-ESI-QTOF-MS). UV and UV/H(2)O(2) pathways involve the decarboxylation of fenofibric acid to 4-chloro-4-(1-hydroxy-1-methylethyl)benzophenone and other minor products, predominantly chlorinated aromatics. We detected several intermediates from reactions with hydroxyl radicals and some lower molecular weight products from the scission of the carbonyl carbon-to-aromatic-carbon bond. We recorded high toxicity in UV irradiated samples for the growth of Pseudokirchneriella subcapitata even after the total depletion of fenofibric acid; this was probably due to the presence of chlorinated aromatics. A degree of toxicity reappeared in highly irradiated UV/H(2)O(2) samples, probably because of the formation of ring-opening products. The degree of mineralization was closely related to that of dechlorination and reached values of over 50% after 3-4 min before stabilizing thereafter.
Related JoVE Video
Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.
Anal. Chem.
PUBLISHED: 03-09-2011
Show Abstract
Hide Abstract
A new analytical method based on stir bar sorptive extraction (SBSE), followed by comprehensive two-dimensional gas chromatography (GCxGC-TOF-MS), has been developed for the automatic searching and evaluation of nonpolar or semipolar contaminants in wastewater and river water. The target compounds selected were 13 personal care products (PCPs), 15 polycyclic aromatic hydrocarbons (PAHs) and 27 pesticides. Excellent results have been obtained in terms of separation efficiency and also in terms of compound identification. Exceptional method detection limits were achieved applying the optimized method, at or below 1 ng/L for most of the compounds in real samples. The reliable confirmation of analyte identity was possible at this low concentration level, even for typically troublesome compounds such as the PAHs. The other validation parameters were good. In addition to obtaining analytical information such as identification and quantification of target analytes, it is also possible to screen for nontarget compounds or unknowns. New contaminants have been identified in the wastewater effluents and river water samples, such as cholesterol and its degradation products, pharmaceuticals, industrial products, other pesticides, and PCPs. The multidimensional information generated by the instrument can also be used by the researchers for contrasting samples and identifying, much more easily, the major differences between samples. We have used this feature to propose studies of comparison between the fingerprinting of different water samples, such as the contamination variation along a river affected by the discharge of urban wastewaters and also the contamination variation over a period of time in the effluent. Results show that the most frequently detected contaminants (and the contaminants detected at higher concentrations) were the PCPs. The musk fragrances galaxolide and tonalid were the most concentrated compounds in the samples. The pesticides and PAHs were present at much lower concentration than PCPs.
Related JoVE Video
Reoperative midface reconstruction.
Oral Maxillofac Surg Clin North Am
PUBLISHED: 12-03-2010
Show Abstract
Hide Abstract
Reoperative reconstruction of the midface is a challenging issue because of the complexity of this region and the severity of the aesthetic and functional sequela related to the absence or failure of a primary reconstruction. The different situations that can lead to the indication of a reoperative reconstructive procedure after previous oncologic ablative procedures in the midface are reviewed. Surgical techniques, anatomic problems, and limitations affecting the reoperative reconstruction in this region of the head and neck are discussed.
Related JoVE Video
Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms.
Toxicol. Sci.
PUBLISHED: 10-07-2010
Show Abstract
Hide Abstract
The physicochemical properties of nanoparticles determine their interaction with living organisms. Four different cerium oxide nanoparticles, including commercial materials, were characterized and compared with a micron-sized ceria. The formation of aggregates as well as ?-potential, surface area, and chemical composition were determined. The formation of primary particle aggregates was a slow process that led to different particle sizes depending on the composition of the medium. In this paper, we describe the toxicity of cerium oxide for the self-luminescent cyanobacterial recombinant strain Anabaena CPB4337 and the green alga Pseudokirchneriella subcapitata. The toxicity for Anabaena exposed to nanoparticles in pure water for 24 h ranged from 0.27 to 6.3 mg/l; P. subcapitata EC(50) (yielded effective concentration of nanoparticles that inhibits the cellular function of interest by 50%) values in the 2.4-29.6 mg/l range. Images of both organisms showed membrane disruption and highly damaged cells. Free cerium was highly toxic for both organisms, but the negligible amount found dissolved in the nanoparticle suspensions could not explain the observed toxic effect of nanoceria on the aquatic organisms; the dissolution of zinc could contribute to the toxicity of bulk material but could not explain the toxic effect of nanoceria either. We found no evidence of nanoparticle uptake by cells, but our observations suggested that their toxic mode of action required direct contact between nanoparticles and cells; in the case of the cyanobacterium, cells completely coated by layers of ceria nanoparticles were observed. Cell damage most probably took place by cell wall and membrane disruption; further research is needed to find out whether the oxidative activity of ceria could be responsible.
Related JoVE Video
Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide.
J. Hazard. Mater.
PUBLISHED: 05-04-2010
Show Abstract
Hide Abstract
The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20°C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43±0.20 M(-1) s(-1) and (6.55±0.33)×10(9) M(-1) s(-1), respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al(2)O(3) or MnO(x)/Al(2)O(3). The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.
Related JoVE Video
Degradation of caffeine and identification of the transformation products generated by ozonation.
Chemosphere
PUBLISHED: 03-27-2009
Show Abstract
Hide Abstract
The ozonation of caffeine in water was performed at different pH values, including acidic conditions. Kinetic experiments were conducted by adding pulses of a concentrated caffeine solution to ozone saturated water. The results showed a rapid decrease of ozone concentration during the first 15s after injection, followed by a gradual decline at a much slower rate. The data were fitted to a second order kinetic model with rate constants increasing from 0.25 to 1.05 M(-1)s(-1) for pH in the 3-10 range. The initial ozone consumption per mol of ozonated caffeine was greater at high pH values, reflecting a higher ozone decomposition rate. The decomposition of ozone was positively affected by the concentration of caffeine, an effect that could be attributed to the presence of a reaction intermediate from the ozonation of caffeine that behaved as a strong promoter of ozone decomposition. A study of the transformation products identified by liquid chromatography in combination with time-of-flight mass spectrometry was carried out, which permitted a tentative degradation pathway to be proposed and several persistent by-products to be identified at both pH 3 and 8. Most transformation products were the result of the opening of the imidazole ring after breaking caffeines N9C8 double bond.
Related JoVE Video
Ozonation of clofibric acid catalyzed by titanium dioxide.
J. Hazard. Mater.
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
The removal of clofibric acid from aqueous solution has been investigated in catalytic and non-catalytic semicontinuous ozonation runs. Kinetic data were analyzed using second order expressions for the reaction between organics and ozone or hydroxyl radicals. Catalytic runs used a commercial titanium dioxide catalyst consisting of fumed colloidal particles. The kinetic constant of the non-catalytic ozonation of clofibric acid at pH 3 was 8.16 x 10(-3)+/-3.4 x 10(-4)L mmol(-1)s(-1). The extent of mineralization during non-catalytic runs ranged from 50% at pH 7 to 20% at pH 3 in a reaction that essentially took place during the first 10-20 min. The catalyst increased the total extent of mineralization, its effect being more important during the first part of the reaction. The pseudo-homogeneous catalytic rate constant was 2.17 x 10(-2) L mmol(-1)s(-1) at pH 3 and 6.80 x 10(-1)L mmol(-1)s(-1) at pH 5, with up to a threefold increase with respect to non-catalytic constants using catalyst load of 1g/L. A set of stopped-flow experiments were designed to elucidate the role of catalyst, whose effect was probably due to the adsorption of organics on catalytic sites rather than to the promotion of ozone decomposition.
Related JoVE Video
Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation.
Water Res.
PUBLISHED: 02-24-2009
Show Abstract
Hide Abstract
This work reports a systematic survey of over seventy individual pollutants in a Sewage Treatment Plant (STP) receiving urban wastewater. The compounds include mainly pharmaceuticals and personal care products, as well as some metabolites. The quantification in the ng/L range was performed by Liquid Chromatography-QTRAP-Mass Spectrometry and Gas Chromatography coupled to Mass Spectrometry. The results showed that paraxanthine, caffeine and acetaminophen were the main individual pollutants usually found in concentrations over 20 ppb. N-formyl-4-amino-antipiryne and galaxolide were also detected in the ppb level. A group of compounds including the beta-blockers atenolol, metoprolol and propanolol; the lipid regulators bezafibrate and fenofibric acid; the antibiotics erythromycin, sulfamethoxazole and trimethoprim, the antiinflammatories diclofenac, indomethacin, ketoprofen and mefenamic acid, the antiepileptic carbamazepine and the antiacid omeprazole exhibited removal efficiencies below 20% in the STP treatment. Ozonation with doses lower than 90 microM allowed the removal of many individual pollutants including some of those more refractory to biological treatment. A kinetic model allowed the determination of second order kinetic constants for the ozonation of bezafibrate, cotinine, diuron and metronidazole. The results show that the hydroxyl radical reaction was the major pathway for the oxidative transformation of these compounds.
Related JoVE Video
Environmental optimization of continuous flow ozonation for urban wastewater reclamation.
Sci. Total Environ.
Show Abstract
Hide Abstract
Wastewater samples from the secondary clarifier of two treatment plants were spiked in the microgram-to-tens-of-microgram per liter range with diuron (herbicide), ibuprofen and diclofenac (anti-inflammatory drugs), sulfamethoxazole and erythromycin (antibiotics), bezafibrate and gemfibrozil (lipid regulators), atenolol (?-blocker), carbamazepine (anti-epileptic), hydrochlorothiazide (diuretic), caffeine (stimulant) and N-acetyl-4-amino-antipiryne, a metabolite of the antipyretic drug dypirone. They were subsequently ozonated in continuous flow using 1.2L lab-scale bubble columns. The concentration of all spiking compounds was monitored in the outlet stream. The effects of varying ozone input, expressed as energy per unit volume, and water flow rate, and of using single or double column were studied in relation to the efficiency of ozone usage and the ratio of pollutant depletion. The ozone dosage required to treat both wastewaters with pollutant depletion of >90% was in the 5.5-8.5 mg/L range with ozone efficiencies greater than 80% depending on the type of wastewater and the operating conditions. This represented 100-200 mol of ozone transferred per mole of pollutant removed. Direct and indirect environmental impacts of ozonation were assessed according to Life Cycle Assessment, a technique that helped identify the most effective treatments in terms of potential toxicity reduction, as well as of toxicity reduction per unit mass of greenhouse-gas emissions, which were used as an indicator of environmental efficiency. A trade-off between environmental effectiveness (toxicity reduction) and greenhouse-gas emissions was observed since maximizing toxicity removal led to higher greenhouse-gas emissions, due to the latters relatively high ozone requirements. Also, there is an environmental trade-off between effectiveness and efficiency. Our results indicate that an efficient use of ozone was not compatible with a full pollutant removal.
Related JoVE Video
An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms.
Aquat. Toxicol.
Show Abstract
Hide Abstract
The effect of nanoceria on two aquatic photosynthetic organisms of ecological relevance, a green alga and a cyanobacterium, is reported. The main bioenergetic process of these organisms, photosynthesis, was studied by measuring both oxygen evolution and chlorophyll a fluorescence emission parameters. Nanoceria significantly inhibited photosynthesis in the cyanobacterium in the entire range of concentrations tested (0.01-100 mg/L), while a dual effect of nanoceria was found in the green alga with slight stimulation at low concentrations and strong inhibition at the highest concentrations tested. Chlorophyll a fluorescence experiments indicated that nanoceria had a significant impact on the primary photochemical processes of photosystem II. The primary cause of the observed photosynthetic inhibition by nanoceria is an excessive level of ROS formation; the results indicated a strong generation of reactive oxygen species (ROS) which caused oxidative damage, as evidenced by lipid peroxidation in both photosynthetic organisms. It is proposed that nanoceria can increase the production of hydrogen peroxide (a normal ROS by-product of light-driven photosynthesis) in both the green alga and the cyanobacterium; through an oxidative reaction, these ROS cause lipid peroxidation, compromising membrane integrity and also seriously impairing photosynthetic performance, eventually leading to cell death.
Related JoVE Video
Oxidative and photochemical processes for the removal of galaxolide and tonalide from wastewater.
Water Res.
Show Abstract
Hide Abstract
Synthetic musks have been reported in wastewaters at concentrations as high as tens of micrograms per litre. The two most significant polycyclic musk fragrance compounds are 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran (HHCB, trade name galaxolide®) and 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (AHTN, trade name tonalide®). We report the result of several irradiation and advanced oxidation processes carried out on samples of the effluent of a wastewater treatment plant located in Alcalá de Henares, Madrid. Wastewater samples were pre-ozonated and spiked with 500 ng/L of tonalide or galaxolide in order to obtain final concentrations in the same order as the raw effluent. The treatments assayed were ozonation with and without the addition of hydrogen peroxide (O?, O?/H?O?), ultraviolet (254 nm low pressure mercury lamp) and xenon-arc visible light irradiation alone and in combination with ozone (UV, O?/UV, Xe, O?/Xe) and visible light photocatalytic oxidation using a Ce-doped titanium dioxide photocatalyst performed under continuous oxygen or ozone gas bubbling (O?/Xe/Ce-TiO?, O?/Xe/Ce-TiO?). In all cases, samples taken at different contact times up to 15 min were analyzed. An analytical method based on stir bar sorptive extraction (SBSE), followed by comprehensive two-dimensional gas chromatography (SBSE-GC × GC-TOF-MS), was used for the automatic searching and evaluation of the synthetic musks and other nonpolar or semipolar contaminants in the wastewater samples. In all cases tonalide was more easily removed than galaxolide. The best results for the latter (more than 75% removal after 5 min on stream) were obtained from ozonation (O?) and visible light photocatalytic ozonation (O?/Xe/Ce-TiO?). A significant removal of both pollutants (?60% after 15 min) was also obtained during visible light photocatalysis (O?/Xe/Ce-TiO?). UV radiation was able to deplete tonalide (+90%) after 15 min but only reduced the concentration of galaxolide to about half of its initial concentration. The toxicity of treated samples decreased for O?/UV and O?/Ce-TiO?, but increased during irradiation processes UV, Xe and Xe/Ce-TiO?. Ozone treatments tend to decrease toxicity up to a certain dosage, from which point the presence of toxic transformation products has adverse effects on aquatic microorganisms.
Related JoVE Video
Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution.
Sci. Total Environ.
Show Abstract
Hide Abstract
This study aims to assess the occurrence, fate and temporal and spatial distribution of anthropogenic contaminants in a river subjected to different pressures (industrial, agricultural, wastewater discharges). For this purpose, the Henares River basin (central Spain) can be considered a representative basin within a continental Mediterranean climate. As the studied river runs through several residential, industrial and agricultural areas, it would be expected that the chemical water quality is modified along its course. Thereby the selection of sampling points and timing of sample collection are critical factors in the monitoring of a river basin. In this study, six different monitoring campaigns were performed in 2010 and contaminants were measured at the effluent point of the main wastewater treatment plant (WWTP) in the river basin and at five different points upstream and downstream from the WWTP emission point. The target compounds evaluated were personal care products (PCPs), polycyclic aromatic hydrocarbons (PAHs) and pesticides. Results show that the river is clearly influenced by wastewater discharges and also by its proximity to agricultural areas. The contaminants detected at higher concentrations were the PCPs. The spatial distribution of the contaminants indicates that the studied contaminants persist along the river. In the time period studied no great seasonal variations of PCPs at the river collection points were observed. In contrast, a temporal trend of pesticides and PAHs was observed. Besides the target compounds, other new contaminants were identified and evaluated in the water samples, some of them being investigated for the first time in the aquatic environment. The behaviour of three important transformation products was also evaluated: 9,10-anthracenodione, galaxolide-lactone and 4-amino-musk xylene. These were found at higher concentrations than their parent compounds, indicating the significance of including the study of transformation products in the monitoring programmes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.