JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Aerosol Mycobacterium tuberculosis infection causes rapid loss of diversity in gut microbiota.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Mycobacterium tuberculosis is an important human pathogen, and yet diagnosis remains challenging. Little research has focused on the impact of M. tuberculosis on the gut microbiota, despite the significant immunological and homeostatic functions of the gastrointestinal tract. To determine the effect of M. tuberculosis infection on the gut microbiota, we followed mice from M. tuberculosis aerosol infection until death, using 16S rRNA sequencing. We saw a rapid change in the gut microbiota in response to infection, with all mice showing a loss and then recovery of microbial community diversity, and found that pre-infection samples clustered separately from post-infection samples, using ecological beta-diversity measures. The effect on the fecal microbiota was observed as rapidly as six days following lung infection. Analysis of additional mice infected by a different M. tuberculosis strain corroborated these results, together demonstrating that the mouse gut microbiota significantly changes with M. tuberculosis infection.
Related JoVE Video
Ecotype diversity and conversion in Photobacterium profundum strains.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Photobacterium profundum is a cosmopolitan marine bacterium capable of growth at low temperature and high hydrostatic pressure. Multiple strains of P. profundum have been isolated from different depths of the ocean and display remarkable differences in their physiological responses to pressure. The genome sequence of the deep-sea piezopsychrophilic strain Photobacterium profundum SS9 has provided some clues regarding the genetic features required for growth in the deep sea. The sequenced genome of Photobacterium profundum strain 3TCK, a non-piezophilic strain isolated from a shallow-water environment, is now available and its analysis expands the identification of unique genomic features that correlate to environmental differences and define the Hutchinsonian niche of each strain. These differences range from variations in gene content to specific gene sequences under positive selection. Genome plasticity between Photobacterium bathytypes was investigated when strain 3TCK-specific genes involved in photorepair were introduced to SS9, demonstrating that horizontal gene transfer can provide a mechanism for rapid colonisation of new environments.
Related JoVE Video
Novel Psychropiezophilic Oceanospirillales Species Profundimonas piezophila gen. nov., sp. nov., Isolated from the Deep-Sea Environment of the Puerto Rico Trench.
Appl. Environ. Microbiol.
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
The diversity of deep-sea high-pressure-adapted (piezophilic) microbes in isolated monoculture remains low. In this study, a novel obligately psychropiezophilic bacterium was isolated from seawater collected from the Puerto Rico Trench at a depth of ?6,000 m. This isolate, designated YC-1, grew best in a nutrient-rich marine medium, with an optimal growth hydrostatic pressure of 50 MPa (range, 20 to 70 MPa) at 8°C. Under these conditions, the maximum growth rate was extremely slow, 0.017 h(-1), and the maximum yield was 3.51 × 10(7) cells ml(-1). Cell size and shape changed with pressure, shifting from 4.0 to 5.0 ?m in length and 0.5 to 0.8 ?m in width at 60 MPa to 0.8- to 1.0-?m diameter coccoid cells under 20 MPa, the minimal pressure required for growth. YC-1 is a Gram-negative, facultatively anaerobic heterotroph. Its predominant cellular fatty acids are the monounsaturated fatty acids (MUFAs) C16:1 and C18:1. Unlike many other psychropiezophiles, YC-1 does not synthesize any polyunsaturated fatty acids (PUFAs). Phylogenetic analysis placed YC-1 within the family of Oceanospirillaceae, closely related to the uncultured symbiont of the deep-sea whale bone-eating worms of the genus Osedax. In common with some other members of the Oceanospirillales, including those enriched during the Deepwater Horizon oil spill, YC-1 is capable of hydrocarbon utilization. On the basis of its characteristics, YC-1 appears to represent both a new genus and a new species, which we name Profundimonas piezophila gen. nov., sp. nov.
Related JoVE Video
The human microbiome: from symbiosis to pathogenesis.
Annu. Rev. Med.
PUBLISHED: 01-19-2013
Show Abstract
Hide Abstract
The human microbiota is a complex assemblage of the microbes inhabiting many sites in the human body. Recent advances in technology have enabled deep sequencing and analysis of the members and structures of these communities. Two sites, the vagina and gastrointestinal tract, are highlighted to exemplify how technological advances have enhanced our knowledge of the host-microbiota system. These examples represent low- and high-complexity communities, respectively. In each example, certain community structures are identified that can be extrapolated to larger collections representing multiple individuals and potential disease or health states. One common feature is the unexpected diversity of the microbiota at any of these locations, which poses a challenge for relating the microbiota to health and disease. However, we anticipate microbiota compositional measurements could become standard clinical practice in the future and may become diagnostic for certain diseases or increased susceptibility to certain disorders. The microbiota of a number of disease states are currently being examined to identify potential correlations. In line with these predictions, it is possible that existing conditions may be resolved by altering the microbiota in a positive way.
Related JoVE Video
Impact of oral typhoid vaccination on the human gut microbiota and correlations with s. Typhi-specific immunological responses.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The resident microbial consortia of the human gastrointestinal tract play an integral role in modulating immune responses both locally and systemically. However, detailed information regarding the effector immune responses after vaccine administration in relation to the gastrointestinal microbiota is absent. In this study, the licensed oral live-attenuated typhoid vaccine Ty21a was administered in a clinical study to investigate whether oral immunization resulted in alterations of the microbiota and to identify whether a given microbiota composition, or subsets of the community, are associated with defined S. Typhi-specific immunological responses. The fecal microbiota composition and temporal dynamics were characterized using bacterial 16S rRNA pyrosequencing from individuals who were either immunized with the Ty21a typhoid vaccine (n?=?13) or served as unvaccinated controls (n?=?4). The analysis revealed considerable inter- and intra-individual variability, yet no discernible perturbations of the bacterial assemblage related to vaccine administration were observed. S. Typhi-specific cell mediated immune (CMI) responses were evaluated by measurement of intracellular cytokine production using multiparametric flow cytometry, and humoral responses were evaluated by measurement of serum anti-LPS IgA and IgG titers. Volunteers were categorized according to the kinetics and magnitude of their responses. While differences in microbial composition, diversity, or temporal stability were not observed among individuals able to mount a positive humoral response, individuals displaying multiphasic CMI responses harbored more diverse, complex communities. In line with this preliminary observation, over two hundred operational taxonomic units (OTUs) were found to differentiate multiphasic and late CMI responders, the vast majority of which classified within the order Clostridiales. These results provide an unprecedented view into the dramatic temporal heterogeneity of both the gut microbiota and host immune responses.
Related JoVE Video
Differential response of the cynomolgus macaque gut microbiota to Shigella infection.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Little is known about the role of gut microbiota in response to live oral vaccines against enteric pathogens. We examined the effect of immunization with an oral live-attenuated Shigella dysenteriae 1 vaccine and challenge with wild-type S. dysenteriae 1 on the fecal microbiota of cynomolgus macaques using 16 S rRNA analysis of fecal samples. Multi-dimensional cluster analysis identified different bacterial community types within macaques from geographically distinct locations. The fecal microbiota of Mauritian macaques, observed to be genetically distinct, harbored a high-diversity community and responded differently to Shigella immunization, as well as challenge compared to the microbiota in non-Mauritian macaques. While both macaque populations exhibited anti-Shigella antibody responses, clinical shigellosis was observed only among non-Mauritian macaques. These studies highlight the importance of further investigation into the possible protective role of the microbiota against enteric pathogens and consideration of host genetic backgrounds in conducting vaccine studies.
Related JoVE Video
Isolation and characterization of a psychropiezophilic alphaproteobacterium.
Appl. Environ. Microbiol.
PUBLISHED: 09-23-2011
Show Abstract
Hide Abstract
Cultivated psychropiezophilic (low-temperature- and high-pressure-adapted) bacteria are currently restricted to phylogenetically narrow groupings capable of growth under nutrient-replete conditions, limiting current knowledge of the extant functional attributes and evolutionary constraints of diverse microorganisms inhabiting the cold, deep ocean. This study documents the isolation of a deep-sea bacterium following dilution-to-extinction cultivation using a natural seawater medium at high hydrostatic pressure and low temperature. To our knowledge, this isolate, designated PRT1, is the slowest-growing (minimal doubling time, 36 h) and lowest cell density-producing (maximal densities of 5.0 × 10? cells ml?¹) piezophile yet obtained. Optimal growth was at 80 MPa, correlating with the depth of capture (8,350 m), and 10°C, with average cell sizes of 1.46 ?m in length and 0.59 ?m in width. Through detailed growth studies, we provide further evidence for the temperature-pressure dependence of the growth rate for deep-ocean bacteria. PRT1 was phylogenetically placed within the Roseobacter clade, a bacterial lineage known for widespread geographic distribution and assorted lifestyle strategies in the marine environment. Additionally, the gene transfer agent (GTA) g5 capsid protein gene was amplified from PRT1, indicating a potential mechanism for increased genetic diversification through horizontal gene transfer within the hadopelagic environment. This study provides a phylogenetically novel isolate for future investigations of high-pressure adaptation, expands the known physiological traits of cultivated members of the Roseobacter lineage, and demonstrates the feasibility of cultivating novel microbial members from the deep ocean using natural seawater.
Related JoVE Video
Going deeper: metagenome of a hadopelagic microbial community.
PLoS ONE
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above.
Related JoVE Video
Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment.
Environ Microbiol Rep
PUBLISHED: 11-24-2010
Show Abstract
Hide Abstract
Relatively little information is available for the composition of microbial communities present in hadal environments, the deepest marine locations. Here we present a description of the phylogenetic diversity of particle-associated (>?3?µm) and free-living (3-0.22?µm) microorganisms present in a pelagic trench environment. Small subunit ribosomal RNA gene sequences were recovered from members of the Bacteria, Archaea and Eukarya obtained from a depth of 6000?m in the Puerto Rico Trench (PRT). Species richness estimates for the bacterial particle-associated fraction were greater compared with the free-living fraction and demonstrated statistically significant compositional differences, while the archaeal fractions were not found to be significantly different. The particle-associated fraction contained more Rhodobacterales and unclassified Myxococcales along with Bacteroidetes, Planctomycetes and chloroplast sequences, whereas the free-living fraction contained more Caulobacterales, Xanthomonadales and Burkholderiales, along with Marine Group A and Gemmatimonadetes. The Eukarya contained a high abundance of Basidiomycota Fungi 18S rRNA genes, as well as representatives from the super-groups Rhizaria, Excavata and Chromalveolata. A diverse clade of diplonemid flagellates was also identified from the eukaryotic phylotypes recovered, which was distinct from previously identified deep-sea pelagic diplonemid groups. The significance of these results to considerations of deep-sea microbial life and particle colonization is discussed in comparison to the few other deep-ocean phylogenetic surveys available.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.