JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Transcriptome analysis of a Ustilago maydis ust1 deletion mutant uncovers involvement of laccase and polyketide synthase genes in spore development.
Mol. Plant Microbe Interact.
PUBLISHED: 09-17-2014
Show Abstract
Hide Abstract
Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid, and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, producing melanized sexual teliospores. Previously we identified Ust1, an APSES transcription factor, whose deletion led to filamentous haploid growth and the production of highly pigmented teliospore-like structures in culture. In this study, we analyzed the transcriptome of a ust1 deletion mutant and functionally characterized two highly up-regulated genes with potential roles in melanin biosynthesis, um05361, encoding a putative laccase (lac1) and um06414 encoding a polyketide synthase (pks1). The ?lac1 mutant strains showed dramatically reduced virulence on maize seedlings and fewer, less pigmented teliospores in adult plants. The ?pks1 mutant was unaffected in seedling virulence, but adult plant tumors generated hyaline, non-melanized teliospores. Thus, while pks1 appeared to be restricted to the synthesis of melanin, lac1 showed a broader role in virulence. In conclusion, the ust1 deletion mutant provided an in vitro model for sporulation in U. maydis, and functional analysis supports the efficacy of this in vitro mutant analysis for identification of genes involved in in planta teliosporogenesis.
Related JoVE Video
Comparative systems biology reveals allelic variation modulating Tocochromanol profiles in Barley (Hordeum vulgare L.).
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Tocochromanols are recognized for nutritional content, plant stress response, and seed longevity. Here we present a systems biological approach to characterize and develop predictive assays for genes affecting tocochromanol variation in barley. Major QTL, detected in three regions of a SNP linkage map, affected multiple tocochromanol forms. Candidate genes were identified through barley/rice orthology and sequenced in genotypes with disparate tocochromanol profiles. Gene-specific markers, designed based on observed polymorphism, mapped to the originating QTL, increasing R2 values at the respective loci. Polymorphism within promoter regions corresponded to motifs known to influence gene expression. Quantitative PCR analysis revealed a trend of increased expression in tissues grown at cold temperatures. These results demonstrate utility of a novel method for rapid gene identification and characterization, and provide a resource for efficient development of barley lines with improved tocochromanol profiles.
Related JoVE Video
SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species.
PLoS ONE
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n?=?6x?=?42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.
Related JoVE Video
Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.
Plant Biotechnol. J.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.