JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A new species of striped Ichthyophis Fitzinger, 1826 (Amphibia: Gymnophiona: Ichthyophiidae) from Myanmar.
Zootaxa
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
A new species of striped ichthyophiid caecilian, Ichthyophis multicolor sp. nov., is described on the basis of morphological and molecular data from a sample of 14 specimens from Ayeyarwady Region, Myanmar. The new species resembles superficially the Indian I. tricolor Annandale, 1909 in having both a pale lateral stripe and an adjacent dark ventrolateral stripe contrasting with a paler venter. It differs from I. tricolor in having many more annuli, and in many details of cranial osteology, and molecular data indicate that it is more closely related to other Southeast Asian Ichthyophis than to those of South Asia. The caecilian fauna of Myanmar is exceptionally poorly known but is likely to include chikilids as well as multiple species of Ichthyophis.
Related JoVE Video
Influence of fossoriality on inner ear morphology: insights from caecilian amphibians.
J. Anat.
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
It is widely accepted that a relationship exists between inner ear morphology and functional aspects of an animal's biology, such as locomotor behaviour. Animals that engage in agile and spatially complex behaviours possess semicircular canals that morphologically maximise sensitivity to correspondingly complex physical stimuli. Stemming from the prediction that fossorial tetrapods require a well-developed sense of spatial awareness, we investigate the hypothesis that fossoriality leads to inner ear morphology that is convergent with other spatially adept tetrapods. We apply morphometrics to otic capsule endocasts of 26 caecilian species to quantify aspects of inner ear shape, and compare these with a sample of frog and salamander species. Our results reveal caecilians (and also frogs) possess strongly curved canals, a feature in common with spatially adept species. However, significantly shorter canals in caecilians suggest reduced sensitivity, possibly associated with reduced reliance on vestibulo-ocular reflexes in this group of visually degenerate tetrapods. An elaboration of the sacculus of caecilians is interpreted as a unique adaptation among amphibians to increase sensitivity to substrate-borne vibrations transmitted through the head. This study represents the first quantitative analyses of inner ear morphology of limbless fossorial tetrapods, and identifies features within a new behavioural context that will contribute to our understanding of the biological consequences of physical stimuli on sensory function and associated morphological evolution.
Related JoVE Video
A relative shift in cloacal location repositions external genitalia in amniote evolution.
Nature
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
The move of vertebrates to a terrestrial lifestyle required major adaptations in their locomotory apparatus and reproductive organs. While the fin-to-limb transition has received considerable attention, little is known about the developmental and evolutionary origins of external genitalia. Similarities in gene expression have been interpreted as a potential evolutionary link between the limb and genitals; however, no underlying developmental mechanism has been identified. We re-examined this question using micro-computed tomography, lineage tracing in three amniote clades, and RNA-sequencing-based transcriptional profiling. Here we show that the developmental origin of external genitalia has shifted through evolution, and in some taxa limbs and genitals share a common primordium. In squamates, the genitalia develop directly from the budding hindlimbs, or the remnants thereof, whereas in mice the genital tubercle originates from the ventral and tail bud mesenchyme. The recruitment of different cell populations for genital outgrowth follows a change in the relative position of the cloaca, the genitalia organizing centre. Ectopic grafting of the cloaca demonstrates the conserved ability of different mesenchymal cells to respond to these genitalia-inducing signals. Our results support a limb-like developmental origin of external genitalia as the ancestral condition. Moreover, they suggest that a change in the relative position of the cloacal signalling centre during evolution has led to an altered developmental route for external genitalia in mammals, while preserving parts of the ancestral limb molecular circuitry owing to a common evolutionary origin.
Related JoVE Video
Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies.
Evolution
PUBLISHED: 02-23-2013
Show Abstract
Hide Abstract
Studies integrating evolutionary and developmental analyses of morphological variation are of growing interest to biologists as they promise to shed fresh light on the mechanisms of morphological diversification. Sexually dimorphic traits tend to be incredibly divergent across taxa. Such diversification must arise through evolutionary modifications to sex differences during development. Nevertheless, few studies of dimorphism have attempted to synthesize evolutionary and developmental perspectives. Using geometric morphometric analysis of head shape for 50 Anolis species, we show that two clades have converged on extreme levels of sexual dimorphism through similar, male-specific changes in facial morphology. In both clades, males have evolved highly elongate faces whereas females retain faces of more moderate proportion. This convergence is accomplished using distinct developmental mechanisms; one clade evolved extreme dimorphism through the exaggeration of a widely shared, potentially ancestral, developmental strategy whereas the other clade evolved a novel developmental strategy not observed elsewhere in the genus. Together, our analyses indicate that both shared and derived features of development contribute to macroevolutionary patterns of morphological diversity among Anolis lizards.
Related JoVE Video
A new species of skin-feeding caecilian and the first report of reproductive mode in Microcaecilia (amphibia: Gymnophiona: Siphonopidae).
PLoS ONE
PUBLISHED: 01-29-2013
Show Abstract
Hide Abstract
A new species of siphonopid caecilian, Microcaecilia dermatophagasp. nov., is described based on nine specimens from French Guiana. The new species is the first new caecilian to be described from French Guiana for more than 150 years. It differs from all other Microcaecilia in having fewer secondary annular grooves and/or in lacking a transverse groove on the dorsum of the first collar. Observations of oviparity and of extended parental care in M. dermatophaga are the first reproductive mode data for any species of the genus. Microcaecilia dermatophaga is the third species, and represents the third genus, for which there has been direct observation of young animals feeding on the skin of their attending mother. The species is named for this maternal dermatophagy, which is hypothesised to be characteristic of the Siphonopidae.
Related JoVE Video
Discovery of a new family of amphibians from northeast India with ancient links to Africa.
Proc. Biol. Sci.
Show Abstract
Hide Abstract
The limbless, primarily soil-dwelling and tropical caecilian amphibians (Gymnophiona) comprise the least known order of tetrapods. On the basis of unprecedented extensive fieldwork, we report the discovery of a previously overlooked, ancient lineage and radiation of caecilians from threatened habitats in the underexplored states of northeast India. Molecular phylogenetic analyses of mitogenomic and nuclear DNA sequences, and comparative cranial anatomy indicate an unexpected sister-group relationship with the exclusively African family Herpelidae. Relaxed molecular clock analyses indicate that these lineages diverged in the Early Cretaceous, about 140 Ma. The discovery adds a major branch to the amphibian tree of life and sheds light on both the evolution and biogeography of caecilians and the biotic history of northeast India-an area generally interpreted as a gateway between biodiversity hotspots rather than a distinct biogeographic unit with its own ancient endemics. Because of its distinctive morphology, inferred age and phylogenetic relationships, we recognize the newly discovered caecilian radiation as a new family of modern amphibians.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.