JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Studying the complex expression dependences between sets of coexpressed genes.
Biomed Res Int
PUBLISHED: 07-24-2014
Show Abstract
Hide Abstract
Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.
Related JoVE Video
A model of protein association based on their hydrophobic and electric interactions.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The propensity of many proteins to oligomerize and associate to form complex structures from their constituent monomers, is analyzed in terms of their hydrophobic (H), and electric pseudo-dipole (D) moment vectors. In both cases these vectors are defined as the product of the distance between their positive and negative centroids, times the total hydrophobicity or total positive charge of the protein. Changes in the magnitudes and directions of H and D are studied as monomers associate to form larger complexes. We use these descriptors to study similarities and differences in two groups of associations: a) open associations such as polymers with an undefined number of monomers (i.e. actin polymerization, amyloid and HIV capsid assemblies); b) closed symmetrical associations of finite size, like spherical virus capsids and protein cages. The tendency of the hydrophobic moments of the monomers in an association is to align in parallel arrangements following a pattern similar to those of phospholipids in a membrane. Conversely, electric dipole moments of monomers tend to align in antiparallel associations. The final conformation of a given assembly is a fine-tuned combination of these forces, limited by steric constraints. This determines whether the association will be open (indetermined number of monomers) or closed (fixed number of monomers). Any kinetic, binding or molecular peculiarities that characterize a protein assembly, comply with the vector rules laid down in this paper. These findings are also independent of protein size and shape.
Related JoVE Video
Quantitative assessment of Mycoplasma hemadsorption activity by flow cytometry.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
A number of adherent mycoplasmas have developed highly complex polar structures that are involved in diverse aspects of the biology of these microorganisms and play a key role as virulence factors by promoting adhesion to host cells in the first stages of infection. Attachment activity of mycoplasma cells has been traditionally investigated by determining their hemadsorption ability to red blood cells and it is a distinctive trait widely examined when characterizing the different mycoplasma species. Despite the fact that protocols to qualitatively determine the hemadsorption or hemagglutination of mycoplasmas are straightforward, current methods when investigating hemadsorption at the quantitative level are expensive and poorly reproducible. By using flow cytometry, we have developed a procedure to quantify rapidly and accurately the hemadsorption activity of mycoplasmas in the presence of SYBR Green I, a vital fluorochrome that stains nucleic acids, allowing to resolve erythrocyte and mycoplasma cells by their different size and fluorescence. This method is very reproducible and permits the kinetic analysis of the obtained data and a precise hemadsorption quantification based on standard binding parameters such as the dissociation constant K d. The procedure we developed could be easily implemented in a standardized assay to test the hemadsorption activity of the growing number of clinical isolates and mutant strains of different mycoplasma species, providing valuable data about the virulence of these microorganisms.
Related JoVE Video
MultitaskProtDB: a database of multitasking proteins.
Nucleic Acids Res.
PUBLISHED: 11-18-2013
Show Abstract
Hide Abstract
We have compiled MultitaskProtDB, available online at http://wallace.uab.es/multitask, to provide a repository where the many multitasking proteins found in the literature can be stored. Multitasking or moonlighting is the capability of some proteins to execute two or more biological functions. Usually, multitasking proteins are experimentally revealed by serendipity. This ability of proteins to perform multitasking functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Even so, the study of this phenomenon is complex because, among other things, there is no database of moonlighting proteins. The existence of such a tool facilitates the collection and dissemination of these important data. This work reports the database, MultitaskProtDB, which is designed as a friendly user web page containing >288 multitasking proteins with their NCBI and UniProt accession numbers, canonical and additional biological functions, monomeric/oligomeric states, PDB codes when available and bibliographic references. This database also serves to gain insight into some characteristics of multitasking proteins such as frequencies of the different pairs of functions, phylogenetic conservation and so forth.
Related JoVE Video
Do protein-protein interaction databases identify moonlighting proteins?
Mol Biosyst
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or "moonlighting", proteins. By and large, moonlighting proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among proteins and pathways. In principle, protein-protein interaction (PPI) databases should contain information on moonlighting proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting proteins. In the present work we check whether well-established moonlighting proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.
Related JoVE Video
Gene ontology function prediction in mollicutes using protein-protein association networks.
BMC Syst Biol
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
Many complex systems can be represented and analysed as networks. The recent availability of large-scale datasets, has made it possible to elucidate some of the organisational principles and rules that govern their function, robustness and evolution. However, one of the main limitations in using protein-protein interactions for function prediction is the availability of interaction data, especially for Mollicutes. If we could harness predicted interactions, such as those from a Protein-Protein Association Networks (PPAN), combining several protein-protein network function-inference methods with semantic similarity calculations, the use of protein-protein interactions for functional inference in this species would become more potentially useful.
Related JoVE Video
Cell division in a minimal bacterium in the absence of ftsZ.
Mol. Microbiol.
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
Mycoplasma genomes exhibit an impressively low amount of genes involved in cell division and some species even lack the ftsZ gene, which is found widespread in the microbial world and is considered essential for cell division by binary fission. We constructed a Mycoplasma genitalium ftsZ null mutant by gene replacement to investigate the role of this gene and the presence of alternative cell division mechanisms in this minimal bacterium. Our results demonstrate that ftsZ is non-essential for cell growth and reveal that, in the absence of the FtsZ protein, M. genitalium can manage feasible cell divisions and cytokinesis using the force generated by its motile machinery. This is an alternative mechanism, completely independent of the FtsZ protein, to perform cell division by binary fission in a microorganism. We also propose that the mycoplasma cytoskeleton, a complex network of proteins involved in many aspects of the biology of these microorganisms, may have taken over the function of many genes involved in cell division, allowing their loss in the regressive evolution of the streamlined mycoplasma genomes.
Related JoVE Video
DockAnalyse: an application for the analysis of protein-protein interactions.
BMC Struct. Biol.
PUBLISHED: 07-20-2010
Show Abstract
Hide Abstract
Is it possible to identify what the best solution of a docking program is? The usual answer to this question is the highest score solution, but interactions between proteins are dynamic processes, and many times the interaction regions are wide enough to permit protein-protein interactions with different orientations and/or interaction energies. In some cases, as in a multimeric protein complex, several interaction regions are possible among the monomers. These dynamic processes involve interactions with surface displacements between the proteins to finally achieve the functional configuration of the protein complex. Consequently, there is not a static and single solution for the interaction between proteins, but there are several important configurations that also have to be analyzed.
Related JoVE Video
Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB).
Bioinform Biol Insights
PUBLISHED: 11-24-2009
Show Abstract
Hide Abstract
Loops represent an important part of protein structures. The study of loop is critical for two main reasons: First, loops are often involved in protein function, stability and folding. Second, despite improvements in experimental and computational structure prediction methods, modeling the conformation of loops remains problematic. Here, we present a structural classification of loops, ArchDB, a mine of information with application in both mentioned fields: loop structure prediction and function prediction. ArchDB (http://sbi.imim.es/archdb) is a database of classified protein loop motifs. The current database provides four different classification sets tailored for different purposes. ArchDB-40, a loop classification derived from SCOP40, well suited for modeling common loop motifs. Since features relevant to loop structure or function can be more easily determined on well-populated clusters, we have developed ArchDB-95, a loop classification derived from SCOP95. This new classification set shows a ~40% increase in the number of subclasses, and a large 7-fold increase in the number of putative structure/function-related subclasses. We also present ArchDB-EC, a classification of loop motifs from enzymes, and ArchDB-KI, a manually annotated classification of loop motifs from kinases. Information about ligand contacts and PDB sites has been included in all classification sets. Improvements in our classification scheme are described, as well as several new database features, such as the ability to query by conserved annotations, sequence similarity, or uploading 3D coordinates of a protein. The lengths of classified loops range between 0 and 36 residues long. ArchDB offers an exhaustive sampling of loop structures. Functional information about loops and links with related biological databases are also provided. All this information and the possibility to browse/query the database through a web-server outline an useful tool with application in the comparative study of loops, the analysis of loops involved in protein function and to obtain templates for loop modeling.
Related JoVE Video
P110 and P140 cytadherence-related proteins are negative effectors of terminal organelle duplication in Mycoplasma genitalium.
PLoS ONE
PUBLISHED: 08-10-2009
Show Abstract
Hide Abstract
The terminal organelle is a complex structure involved in many aspects of the biology of mycoplasmas such as cell adherence, motility or cell division. Mycoplasma genitalium cells display a single terminal organelle and duplicate this structure prior to cytokinesis in a coordinated manner with the cell division process. Despite the significance of the terminal organelle in mycoplasma virulence, little is known about the mechanisms governing its duplication.
Related JoVE Video
Bioinformatics annotation of the hypothetical proteins found by omics techniques can help to disclose additional virulence factors.
Curr. Microbiol.
PUBLISHED: 05-29-2009
Show Abstract
Hide Abstract
The advent of genomics should have facilitated the identification of microbial virulence factors, a key objective for vaccine design. When the bacterial pathogen infects the host it expresses a set of genes, a number of them being virulence factors. Among the genes identified by techniques as microarrays, in vivo expression technology, signature-tagged mutagenesis and differential fluorescence induction there are many related to cellular stress, basal metabolism, etc., which cannot be directly involved in virulence, or at least cannot be considered useful candidates to be deleted for designing a live attenuated vaccine. Among the genes disclosed by these methodologies there are a number of hypothetical or unknown proteins. As they can hide some true virulence factors, we have reannotated all of these hypothetical proteins from several respiratory pathogens by a careful and in-depth analysis of each one. Although some of the re-annotations match with functions that can be related to microbial virulence, the identification of virulence factors remains difficult.
Related JoVE Video
PCOPGene-Net: holistic characterisation of cellular states from microarray data based on continuous and non-continuous analysis of gene-expression relationships.
BMC Bioinformatics
PUBLISHED: 01-27-2009
Show Abstract
Hide Abstract
Microarray technology is so expensive and powerful that it is essential to extract maximum value from microarray data, specially from large-sample-series microarrays. Our web tools attempt to respond to these researchers needs by facilitating the possibility to test and formulate from a hypothesis to entire models under a holistic point of view.
Related JoVE Video
Structural characterization of the enzymes composing the arginine deiminase pathway in Mycoplasma penetrans.
PLoS ONE
Show Abstract
Hide Abstract
The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 Å resolution in its apo-form, displaying an "open" conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 Å and 2.6 Å resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 Å resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the ?-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.
Related JoVE Video
The EAGR box structure: a motif involved in mycoplasma motility.
Mol. Microbiol.
Show Abstract
Hide Abstract
Mycoplasma genitalium is an emerging human pathogen with the smallest genome found among self-replicating organisms. M.?genitalium presents a complex cytoskeleton with a differentiated protrusion known as the terminal organelle. This polar structure plays a central role in functions essential for the virulence of the microorganism, such as motility and cell-host adhesion. A well-conserved Enriched in Aromatic and Glycine Residues motif, the EAGR box, is present in many of the proteins found in the terminal organelle. We determined the crystal structure of the globular domain from M.?genitalium MG200 that contains an EAGR box. This structural information is the first at near atomic resolution for the components of the terminal organelle. The structure revealed a dimer stabilized by a compact hydrophobic core that extends throughout the dimer interface. Monomers present a new fold that contains an accurate intra-subunit symmetry relating two conspicuous hairpins. Some features, such as the domain plasticity and the presence and organization of the intra- and inter-subunit symmetry axes, support a role for the EAGR box in protein-protein interactions. Genetic, biochemical and microcinematography analyses of MG200 variants lacking the EAGR box containing domain confirm the relevant and specific association of this domain with cell motility.
Related JoVE Video
A Comprehensive Proteome of Mycoplasma genitalium.
J. Proteome Res.
Show Abstract
Hide Abstract
Mycoplasma genitalium is a human pathogen associated with several sexually transmitted diseases. Proteomic technologies, along with other methods for global gene expression analysis, play a key role in understanding the mechanisms of bacterial pathogenesis and physiology. The proteome of M. genitalium, model of a minimal cell, has been extended using a combination of different proteomic approaches and technologies. The total proteome of this microorganism has been analyzed using gel-based and gel-free approaches, achieving the identification of 85.3% of the predicted ORFs. In addition, a comprehensive analysis of membrane subproteome has been performed. For this purpose, the TX-114 soluble fraction has been analyzed as well as the surface proteins, using cell-surface protein labeling with CyDye. Finally, the serological response of M. genitalium-infected patients and healthy donors has been analyzed to identify proteins that trigger immunological response. Here, we present the most extensive M. genitalium proteome analysis (85.3% of predicted ORFs), a comprehensive M. genitalium membrane analysis, and a study of the human serological response to M. genitalium.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.