JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The selective estrogen receptor modulator, bazedoxifene, reduces ischemic brain damage in male rat.
Neurosci. Lett.
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
While the estrogen treatment of stroke is under debate, selective estrogen receptor modulators (SERMs) arise as a promising alternative. We hypothesize that bazedoxifene (acetate, BZA), a third generation SERM approved for the treatment of postmenopausal osteoporosis, reduces ischemic brain damage in a rat model of transient focal cerebral ischemia. For comparative purposes, the neuroprotective effect of 17?-estradiol (E2) has also been assessed. Male Wistar rats underwent 60min middle cerebral artery occlusion (intraluminal thread technique), and grouped according to treatment: vehicle-, E2- and BZA-treated rats. Optimal plasma concentrations of E2 (45.6±7.8pg/ml) and BZA (20.7±2.1ng/ml) were achieved 4h after onset of ischemia, and maintained until the end of the procedure (24h). Neurofunctional score and volume of the damaged brain regions were the main end points. At 24h after ischemia-reperfusion, neurofunctional examination of the animals did not show significant differences among the three experimental groups. By contrast, both E2- and BZA-treated groups showed significantly lower total infarct volumes, BZA acting mainly in the cortical region and E2 acting mainly at the subcortical level. Our results demonstrate that: (1) E2 at physiological plasma levels in female rats is neuroprotective in male rats when given at the acute stage of the ischemic challenge and (2) BZA at clinically relevant plasma levels mimics the neuroprotective action of E2 and could be, therefore, a candidate in stroke treatment.
Related JoVE Video
Improvement of the circulatory function partially accounts for the neuroprotective action of the phytoestrogen genistein in experimental ischemic stroke.
Eur. J. Pharmacol.
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
We tested the hypothesis that the phytoestrogen genistein protects the brain against ischemic stroke by improving the circulatory function in terms of reduced production of thromboxane A2 and leukocyte-platelet aggregates, and of preserved vascular reactivity. Ischemia-reperfusion (90 min-3 days, intraluminal filament) was induced in male Wistar rats, and functional score and cerebral infarct volume were the end points examined. Genistein (10mg/kg/day) or vehicle (?-cyclodextrin) was administered at 30 min after ischemia or sham-operation. Production of thromboxane A2 and leukocyte-platelet aggregates, as well as reactivity of carotid artery to U-46619 (thromboxane A2 analogue) and to platelet releasate was measured. At 3 days post-ischemia, both improvement in the functional examination and reduction in the total infarct volume were shown in the ischemic genistein-treated group. Genistein significantly reverted both the increased thromboxane A2 concentration and the increased leukocyte-platelet aggregates production found in samples from the ischemic vehicle-treated group. Both U-46619 and platelet releasate elicited contractions of the carotid artery, which were significantly lower in the ischemic vehicle-treated group. Genistein significantly restored both the decreased U-46619- and the decreased platelet releasate-elicited contractile responses. In conclusion, genistein protects the brain against an ischemia-reperfusion challenge, at least in part, by its beneficial effects on the circulatory function.
Related JoVE Video
Involvement of prostacyclin and potassium channels in the diabetes-induced hyporeactivity of the rabbit carotid artery to B-type natriuretic peptide.
Eur. J. Pharmacol.
PUBLISHED: 01-20-2013
Show Abstract
Hide Abstract
The relation between diabetes and stroke is bidirectional: diabetes is an important risk factor for ischemic stroke, and acute stroke frequently induces hyperglycemia. On the other hand, plasma B-type natriuretic peptide (BNP) levels are raised in diabetes and stroke. The purpose was to study how alloxan-induced diabetes might modify the effects of BNP in rabbit carotid arteries and the mechanisms involved in such actions. To do this, isometric tension in isolated rabbit carotid artery was recorded and prostanoids release and plasma NT-proBNP were measured by enzyme immunoassay. BNP induced a relaxation of phenylephrine-precontracted carotid arteries, and this relaxation was lower in diabetic than in control rabbits. Endothelium removal did not modify the relaxation to BNP in control rabbits but increased this relaxation in diabetic rabbits. In control rabbits, indomethacin inhibited the BNP-induced relaxation in the presence and in the absence of endothelium. In diabetic rabbits, indomethacin did not modify the BNP-induced relaxation in arteries with endothelium and inhibited it in arteries without endothelium. In the presence of BNP the carotid artery released thromboxane A2 and prostacyclin, and the release of endothelial prostacyclin was inhibited in diabetic rabbits. Glibenclamide and 4-aminopyridine inhibited the relaxation to BNP, and these inhibitions were lower in diabetic than in control rabbits. In conclusion, our results provide a new understanding concerning the mechanisms of the diabetes-induced hyporeactivity of the carotid artery to BNP, that at least include the loss of endothelial prostacyclin and a reduced participation of ATP-sensitive K(+) channels (KATP) and voltage-sensitive K(+) channels (KV).
Related JoVE Video
Novel antihypertensive hexa- and heptapeptides with ACE-inhibiting properties: from the in vitro ACE assay to the spontaneously hypertensive rat.
Peptides
PUBLISHED: 03-07-2011
Show Abstract
Hide Abstract
Bioactive ACE inhibiting peptides are gaining interest in hypertension treatment. We have designed and screened six synthetic heptapeptides (PACEI48 to PACEI53) based on two hexapeptide leads (PACEI32 and PACEI34) to improve ACE inhibitory properties and assess their antihypertensive effects. ACE activity was assayed in vitro and ex vivo. Selected peptides were administered to spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats. In vitro cytotoxicity was assessed with the MTT reduction test. The six heptapeptides at low micromolar concentration produced different degrees of in vitro inhibition of ACE activity using the synthetic substrate HHL or the natural substrate angiotensin I; and ex vivo inhibition of ACE-dependent, angiotensin I-induced vasoconstriction, but not angiotensin II-induced vasoconstriction. Oral administration of the hexapeptide PACEI32L, and the heptapeptides PACEI50L and PACEI52L, induced reductions in systolic blood pressure lasting up to 3h in SHRs but not in WKY rats. Intravenous injection of PACEI32L and PACEI50L, but not PACEI52L, induced acute transient reductions in mean blood pressure of SHRs. d-Amino acid peptides showed five-fold less ACE inhibitory potency, no inhibitory effect on angiotensin I-induced vasoconstriction, and antihypertensive effect in SHRs after i.v. injection, but not after oral administration. The toxicity of peptides to reduce the viability of cultured cells was in the millimolar range. In conclusion, we have obtained novel rationally designed heptapeptides with improved ACE inhibitory properties when compared to lead hexapeptides. One selected hexapeptide and two heptapeptides show oral antihypertensive effects in SHRs and appear safe in cytotoxicity assays.
Related JoVE Video
Mechanisms underlying the diabetes-induced hyporeactivity of the rabbit carotid artery to atrial natriuretic peptide.
Pharmacol. Res.
PUBLISHED: 09-07-2010
Show Abstract
Hide Abstract
Atrial natriuretic peptide (ANP) plays an important role in the pathophysiology of the vascular complications in diabetes. The working hypothesis was that diabetes might modify the vascular actions of ANP in isolated rabbit carotid arteries and the mechanisms involved in these actions. ANP (10(-12)-10(-7)M) induced a relaxation of precontracted carotid arteries, which was lower in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal increased the ANP-induced relaxation. Isatin inhibited the relaxation to ANP both in arteries with and without endothelium. Carotid arteries from diabetic rabbits showed a decreased natriuretic peptide receptor (NPR)-A expression and an enhanced NPR-C expression. Inhibition of NO-synthesis did not modify ANP-induced relaxation in control rabbits but inhibited it in diabetic rabbits. In arteries with endothelium indomethacin enhanced the relaxation to ANP in control rabbits but did not modify it in diabetic rabbits. In endothelium-denuded arteries indomethacin inhibited the relaxation to ANP in both groups of animals. In KCl-depolarised arteries, relaxation to ANP was almost abolished both in control and diabetic rabbits. Tetraethylammonium inhibited the relaxation to ANP, and this inhibition was higher in diabetic than in control rabbits. These results suggest that diabetes produces hyporeactivity of the rabbit carotid artery to ANP by a mechanism that at least includes a reduced expression of NPR-A, an enhanced expression of NPR-C and a reduced participation of K(+)-channels. Furthermore, diabetes enhances endothelial NO release and diminishes the ratio thromboxane A(2)/prostacyclin. This increase of vasodilators could result from compensatory mechanisms counteracting the arterial hyporeactivity to ANP.
Related JoVE Video
Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction.
Peptides
PUBLISHED: 06-10-2010
Show Abstract
Hide Abstract
Endothelin-converting enzyme (ECE), a key peptidase in the endothelin (ET) system, cleaves inactive big ET-1 to produce active ET-1, which binds to ET(A) receptors to exert its vasoconstrictor and pressor effects. ECE inhibition could be beneficial in the treatment of hypertension. In this study, a set of eight lactoferricin B (LfcinB)-derived peptides, previously characterized in our laboratory as angiotensin-converting enzyme (ACE) inhibitory peptides, was examined for their inhibitory effects on ECE. In vitro inhibitory effects on ECE activity were assessed using both the synthetic fluorogenic peptide substrate V (FPS V) and the natural substrate big ET-1. To study vasoactive effects, an ex vivo functional assay was developed using isolated rabbit carotid artery segments. With FPS V, only four LfcinB-derived peptides induced inhibition of ECE activity, whereas the eight peptides showed ECE inhibitory effects with big ET-1 as substrate. Regarding the ex vivo assays, six LfcinB-derived peptides showed inhibition of big ET-1-induced, ECE-dependent vasoconstriction. A positive correlation between the inhibitory effects of LfcinB-derived peptides on ECE activity when using big ET-1 and the inhibitory effects on ECE-dependent vasoconstriction was shown. ECE-independent vasoconstriction induced by ET-1 was not affected, thus discarding effects of LfcinB-derived peptides on ET(A) receptors or intracellular signal transduction mechanisms. In conclusion, a combined in vitro and ex vivo method to assess the effects of potentially antihypertensive peptides on the ET system has been developed and applied to show the inhibitory effects on ECE-dependent vasoconstriction of six LfcinB-derived peptides, five of which were dual vasopeptidase (ACE/ECE) inhibitors.
Related JoVE Video
Antihypertensive properties of lactoferricin B-derived peptides.
J. Agric. Food Chem.
PUBLISHED: 05-08-2010
Show Abstract
Hide Abstract
A set of eight lactoferricin B (LfcinB)-derived peptides was examined for inhibitory effects on angiotensin I-converting enzyme (ACE) activity and ACE-dependent vasoconstriction, and their hypotensive effect in spontaneously hypertensive rats (SHR). Peptides were derived from different elongations both at the C-terminal and N-terminal ends of the representative peptide LfcinB(20-25), which is known as the LfcinB antimicrobial core. All of the eight LfcinB-derived peptides showed in vitro inhibitory effects on ACE activity with different IC(50) values. Moreover, seven of them showed ex vivo inhibitory effects on ACE-dependent vasoconstriction. No clear correlation between in vitro and ex vivo inhibitory effects was found. Only LfcinB(20-25) and one of its fragments, F1, generated after a simulated gastrointestinal digestion, showed significant antihypertensive effects in SHR after oral administration. Remarkably, F1 did not show any effect on ACE-dependent vasoconstriction in contrast to the inhibitory effect showed by LfcinB(20-25). In conclusion, two LfcinB-derived peptides lower blood pressure and exhibit potential as orally effective antihypertensive compounds, yet a complete elucidation of the mechanism(s) involved deserves further ongoing research.
Related JoVE Video
Transient focal cerebral ischemia significantly alters not only EAATs but also VGLUTs expression in rats: relevance of changes in reactive astroglia.
J. Neurochem.
PUBLISHED: 03-26-2010
Show Abstract
Hide Abstract
The involvement of plasma membrane glutamate transporters (EAATs - excitatory aminoacid transporters) in the pathophysiology of ischemia has been widely studied, but little is known about the role of vesicular glutamate transporters (VGLUTs) in the ischemic process. We analyzed the expression of VGLUT1-3 in the cortex and caudate-putamen of rats subjected to transient middle cerebral artery occlusion. Western blot and immunohistochemistry revealed an increase of VGLUT1 signal in cortex and caudate-putamen until 3 days of reperfusion followed by a reduction 7 days after the ischemic insult. By contrast, VGLUT2 and 3 were drastically reduced. Confocal microscopy revealed an increase in VGLUT2 and 3 immunolabelling in the reactive astrocytes of the ischemic corpus callosum and cortex. Changes in VGLUTs and EAATs expression were differently correlated to neurological deficits. Interestingly, changes in VGLUT1 and EAAT2 expression showed a significant positive correlation in caudate-putamen. Taken together, these results suggest a contribution of VGLUTs to glutamate release in these structures, which could promote neuroblast migration and neurogenesis during ischemic recovery, and a possible interplay with EAATs in the regulation of glutamate levels, at least in the first stages of ischemic recovery.
Related JoVE Video
Perivascular nerve fiber ?-synuclein regulates contractility of mouse aorta: a link to autonomic dysfunction in Parkinsons disease.
Neurochem. Int.
PUBLISHED: 03-24-2010
Show Abstract
Hide Abstract
Parkinsons disease and other neurodegenerative disorders associated to changes in alpha-synuclein often result in autonomic dysfunction, most of the time accompanied by abundant expression of this synaptic protein in peripheral autonomic neurons. Given that expression of alpha-synuclein in vascular elements has been previously reported, the present study was undertaken to determine whether alpha-synuclein directly participates in the regulation of vascular responsiveness. We detected by immunohistochemistry perivascular nerve fibers containing alpha-synuclein in the aorta of mice while aortic endothelial cells and muscular fibers themselves did not exhibit detectable levels of this protein. To assess the effect of alpha-synuclein on vascular reactivity, aortic ring preparations obtained from alpha-synuclein-deficient knockout mice and from transgenic mice overexpressing human wild-type alpha-synuclein under the control of the tyrosine hydroxylase-promoter were mounted and equilibrated in organ baths for isometric tension recording. Lack of alpha-synuclein did not modify the relaxant responses to the endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) vasodilators, but resulted in a greater than normal norepinephrine-induced vasoconstriction along with a lowered response to dopamine, suggesting potential presynaptic changes in dopamine and norepinephrine releases in knockout mice. Overexpression of alpha-synuclein in TH-positive fibers resulted in complex abnormal responses, characterized by lowered acetylcholine-induced relaxation and lowered norepinephrin-induced contraction. Taken together, our data show for the first time that alpha-synuclein is present in sympathetic fibers supplying the murine aorta and provide evidence that changes in alpha-synuclein levels in perivascular fibers play a physiological role in the regulation of vascular function.
Related JoVE Video
Acute estradiol protects CA1 neurons from ischemia-induced apoptotic cell death via the PI3K/Akt pathway.
Brain Res.
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
Global ischemia arising during cardiac arrest or cardiac surgery causes highly selective, delayed death of hippocampal CA1 neurons. Exogenous estradiol ameliorates global ischemia-induced neuronal death and cognitive impairment in male and female rodents. However, the molecular mechanisms by which a single acute injection of estradiol administered after the ischemic event intervenes in global ischemia-induced apoptotic cell death are unclear. Here we show that acute estradiol acts via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling cascade to protect CA1 neurons in ovariectomized female rats. We demonstrate that global ischemia promotes early activation of glycogen synthase kinase-3beta (GSK3beta) and forkhead transcription factor of the O class (FOXO)3A, known Akt targets that are related to cell survival, and activation of caspase-3. Estradiol prevents ischemia-induced dephosphorylation and activation of GSK3beta and FOXO3A, and the caspase death cascade. These findings support a model whereby estradiol acts by activation of PI3K/Akt signaling to promote neuronal survival in the face of global ischemia.
Related JoVE Video
Mechanisms involved in the relaxant action of testosterone in the renal artery from male normoglycemic and diabetic rabbits.
Pharmacol. Res.
PUBLISHED: 07-22-2009
Show Abstract
Hide Abstract
Kidney disease is a frequent complication in diabetes, and significant differences have been reported between male and female patients. Our working hypothesis was that diabetes might modify the vascular actions of testosterone in isolated rabbit renal arteries and the mechanisms involved in these actions. Testosterone (10(-8) to 10(-4)M) induced relaxation of precontracted arteries, without significant differences between control and diabetic rabbits. Both in control and diabetic rabbits endothelium removal inhibited testosterone relaxant action. In arteries with endothelium, incubation with indomethacin (10(-5)M), N(G)-nitro-l-arginine (10(-5)M) or tetraethylammonium (10(-5)M) did not modify relaxations to testosterone neither in control nor in diabetic rabbits. In endothelium-denuded arteries indomethacin enhanced the relaxant action of testosterone, both in control and diabetic rabbits. In arteries from diabetic rabbits, eNOS, iNOS and COX-1 expression and testosterone-induced release of thromboxane A(2) and prostacyclin were not significantly different from those observed in control rabbits. However, COX-2 expression was significantly lower in diabetic rabbits that in control rabbits. In nominally Ca(2+)-free medium, cumulative addition of CaCl2 (10(-5) to 3x10(-2)M) contracted previously depolarized arteries. Testosterone (10(-4)M) inhibited CaCl2 contractions of the renal artery both in control and diabetic rabbits. These results show that testosterone relaxes the renal artery both in control and diabetic rabbits. This relaxation is modulated by muscular thromboxane A(2), it is partially mediated by endothelial prostacyclin, and it involves the blocking of extracellular Ca2+ entry. Diabetes does not modify the mechanisms involved in the relaxant action of testosterone in the rabbit renal artery.
Related JoVE Video
Role of NO-synthases and cyclooxygenases in the hyperreactivity of male rabbit carotid artery to testosterone under experimental diabetes.
Pharmacol. Res.
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
Cardiovascular disease is the major cause of morbidity and mortality in diabetic patients, which in turn is also associated with low levels of serum testosterone. The working hypothesis was that diabetes might modify the mechanisms involved in the vascular actions of testosterone in isolated rabbit carotid arteries. Testosterone (10(-8)-3x10(-4)M) induced a concentration-dependent relaxation of precontracted carotid arteries, which was higher in diabetic than in control rabbits. In control rabbits neither endothelium removal nor the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine (l-NOArg, 10(-5)M) modified the relaxant action of testosterone, and the cyclooxygenase (COX) inhibitor indomethacin (10(-5)M) enhanced this relaxation. In contrast, in diabetic rabbits endothelium removal, l-NOArg (10(-5)M) or indomethacin (10(-5)M) inhibited the testosterone induced relaxation. In arteries from diabetic rabbits, eNOS, iNOS and COX-2 expression and testosterone induced release of prostacyclin resulted enhanced in comparison with arteries from control rabbits. Testosterone (10(-4)M) strongly inhibited CaCl(2) (10(-5)-3x10(-2)M) concentration-related contractions of the carotid artery both in control and diabetic rabbits. These results suggest that testosterone relaxes the rabbit carotid artery by blocking the extracellular calcium entry. Diabetes enhances the vasodilator response of the rabbit carotid artery to testosterone by a mechanism that at least includes an increased modulatory activity of the endothelial nitric oxide and an augmented release of COX-2 vasodilator, prostacyclin rather than the absence of COX-1 vasoconstrictor, thromboxane A(2). The hypotestosteronemia observed in diabetic rabbits could be a consequence of the increased expression of iNOS and could contribute to the hyperreactivity of the rabbit carotid artery to testosterone.
Related JoVE Video
Diabetes impairs the atrial natriuretic peptide relaxant action mediated by potassium channels and prostacyclin in the rabbit renal artery.
Pharmacol. Res.
Show Abstract
Hide Abstract
Diabetes is associated with increased prevalence of hypertension, cardiovascular and renal disease. Atrial natriuretic peptide (ANP) plays an important role in cardiovascular pathophysiology and is claimed to have cardioprotective and renoprotective effect in diabetic patients. The working hypothesis was that alloxan-induced diabetes might modify the vascular effects of ANP in isolated rabbit renal arteries and the mechanisms involved in such actions. Plasma ANP levels were higher in diabetic rabbits than in control rabbits. ANP (10(-12)-10(-7)M) induced a relaxation of precontracted renal arteries, which was lower in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal decreased the ANP-induced relaxation but inhibition of NO-synthesis did not modify ANP-induced relaxations. In KCl-depolarised arteries, relaxation to ANP was almost abolished both in control and diabetic rabbits. Tetraethylammonium (TEA) partly inhibited the relaxation to ANP in control rabbits but did not modify it in diabetic rabbits. Glibenclamide and 4-aminopyridine inhibited the relaxation to ANP, and these inhibitions were lower in diabetic than in control rabbits. Indomethacin potentiated the relaxation to ANP, more in control than in diabetic rabbits. In the presence of ANP the renal artery released thromboxane A(2) and prostacyclin, and the release of prostacyclin resulted decreased in diabetic rabbits. The present results suggest that diabetes produces hyporeactivity of the rabbit renal artery to ANP by mechanisms that at least include the reduced modulation by prostacyclin and a lower participation of ATP-sensitive K(+) channel (K(ATP)), voltage-sensitive K(+) channels (K(V)) and TEA-sensitive K(+) channels (K(Ca)).
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.