JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Regulatory T cells expanded from HIV-1-infected individuals maintain phenotype, TCR repertoire and suppressive capacity.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
While modulation of regulatory T cell (Treg) function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4(+) Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-?) repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region), characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection.
Related JoVE Video
Possession of HLA class II DRB1*1303 associates with reduced viral loads in chronic HIV-1 clade C and B infection.
J. Infect. Dis.
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
The HLA class II molecules play a central role in the generation of human immunodeficiency virus (HIV)-specific CD4(+) T-helper cells, which are critical for the induction of cytotoxic CD8(+) T cell responses. However, little is known about the impact of HLA class II alleles on HIV disease progression.
Related JoVE Video
Impact of select immunologic and virologic biomarkers on CD4 cell count decrease in patients with chronic HIV-1 subtype C infection: results from Sinikithemba Cohort, Durban, South Africa.
Clin. Infect. Dis.
PUBLISHED: 08-12-2009
Show Abstract
Hide Abstract
The extent to which immunologic and clinical biomarkers influence human immunodeficiency virus type 1 (HIV-1) infection outcomes remains incompletely characterized, particularly for non-B subtypes. On the basis of data supporting in vitro HIV-1 protein-specific CD8 T lymphocyte responses as correlates of immune control in cross-sectional studies, we assessed the relationship of these responses, along with established HIV-1 biomarkers, with rates of CD4 cell count decrease in individuals infected with HIV-1 subtype C.
Related JoVE Video
Immunodominant HIV-1 Cd4+ T cell epitopes in chronic untreated clade C HIV-1 infection.
PLoS ONE
PUBLISHED: 01-18-2009
Show Abstract
Hide Abstract
A dominance of Gag-specific CD8+ T cell responses is significantly associated with a lower viral load in individuals with chronic, untreated clade C human immunodeficiency virus type 1 (HIV-1) infection. This association has not been investigated in terms of Gag-specific CD4+ T cell responses, nor have clade C HIV-1-specific CD4+ T cell epitopes, likely a vital component of an effective global HIV-1 vaccine, been identified.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.