JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries.
Related JoVE Video
A herbivore knows its patch: luderick, Girella tricuspidata, exhibit strong site fidelity on shallow subtidal reefs in a temperate marine park.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Understanding movement patterns, habitat use and behaviour of fish is critical to determining how targeted species may respond to protection provided by "no-take" sanctuary zones within marine parks. We assessed the fine and broad scale movement patterns of an exploited herbivore, luderick (Girella tricuspidata), using acoustic telemetry to evaluate how this species may respond to protection within Jervis Bay (New South Wales, Australia). We surgically implanted fourteen fish with acoustic transmitters and actively and passively tracked individuals to determine fine and broad scale movement patterns respectively. Eight fish were actively tracked for 24 h d¯(1) for 6 d (May 2011), and then intermittently over the following 30 d. Six fish were passively tracked from December 2011 to March 2012, using a fixed array of receivers deployed across rocky reefs around the perimeter of the bay. Luderick exhibited strong site fidelity on shallow subtidal reefs, tending to remain on or return consistently to the reef where they were caught and released. All eight fish actively tracked used core areas solely on their release reef, with the exception of one fish that used multiple core areas, and four of the six fish passively tracked spent between 75 to 96% of days on release reefs over the entire tracking period. Luderick did move frequently to adjacent reefs, and occasionally to more distant reefs, however consistently returned to their release reef. Luderick also exhibited predictable patterns in movement between spatially distinct daytime and night-time core use areas. Night-time core use areas were generally located in sheltered areas behind the edge of reefs. Overall, our data indicate luderick exhibit strong site fidelity on shallow subtidal reefs in Jervis Bay and suggests that this important herbivore may be likely to show a positive response to protection within the marine park.
Related JoVE Video
Coastal fish assemblages reflect geological and oceanographic gradients within an Australian zootone.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Distributions of mobile animals have been shown to be heavily influenced by habitat and climate. We address the historical and contemporary context of fish habitats within a major zootone: the Recherche Archipelago, southern western Australia. Baited remote underwater video systems were set in nine habitat types within three regions to determine the species diversity and relative abundance of bony fishes, sharks and rays. Constrained ordinations and multivariate prediction and regression trees were used to examine the effects of gradients in longitude, depth, distance from islands and coast, and epibenthic habitat on fish assemblage composition. A total of 90 species from 43 families were recorded from a wide range of functional groups. Ordination accounted for 19% of the variation in the assemblage composition when constrained by spatial and epibenthic covariates, and identified redundancy in the use of distance from the nearest emergent island as a predictor. A spatial hierarchy of fourteen fish assemblages was identified using multivariate prediction and regression trees, with the primary split between assemblages on macroalgal reefs, and those on bare or sandy habitats supporting seagrass beds. The characterisation of indicator species for assemblages within the hierarchy revealed important faunal break in fish assemblages at 122.30 East at Cape Le Grand and subtle niche partitioning amongst species within the labrids and monacanthids. For example, some species of monacanthids were habitat specialists and predominantly found on seagrass (Acanthaluteres vittiger, Scobinichthys granulatus), reef (Meuschenia galii, Meuschenia hippocrepis) or sand habitats (Nelusetta ayraudi). Predatory fish that consume molluscs, crustaceans and cephalopods were dominant with evidence of habitat generalisation in reef species to cope with local disturbances by wave action. Niche separation within major genera, and a sub-regional faunal break, indicate future zootone mapping should recognise both cross-shelf and longshore environmental gradients.
Related JoVE Video
Hagfish predatory behaviour and slime defence mechanism.
Sci Rep
PUBLISHED: 08-24-2011
Show Abstract
Hide Abstract
Hagfishes (Myxinidae), a family of jawless marine pre-vertebrates, hold a unique evolutionary position, sharing a joint ancestor with the entire vertebrate lineage. They are thought to fulfil primarily the ecological niche of scavengers in the deep ocean. However, we present new footage from baited video cameras that captured images of hagfishes actively preying on other fish. Video images also revealed that hagfishes are able to choke their would-be predators with gill-clogging slime. This is the first time that predatory behaviour has been witnessed in this family, and also demonstrates the instantaneous effectiveness of hagfish slime to deter fish predators. These observations suggest that the functional adaptations and ecological role of hagfishes, past and present, might be far more diverse than previously assumed. We propose that the enduring success of this oldest extant family of fishes over 300 million years could largely be due to their unique combination of functional traits.
Related JoVE Video
Are we predicting the actual or apparent distribution of temperate marine fishes?
PLoS ONE
Show Abstract
Hide Abstract
Planning for resilience is the focus of many marine conservation programs and initiatives. These efforts aim to inform conservation strategies for marine regions to ensure they have inbuilt capacity to retain biological diversity and ecological function in the face of global environmental change--particularly changes in climate and resource exploitation. In the absence of direct biological and ecological information for many marine species, scientists are increasingly using spatially-explicit, predictive-modeling approaches. Through the improved access to multibeam sonar and underwater video technology these models provide spatial predictions of the most suitable regions for an organism at resolutions previously not possible. However, sensible-looking, well-performing models can provide very different predictions of distribution depending on which occurrence dataset is used. To examine this, we construct species distribution models for nine temperate marine sedentary fishes for a 25.7 km(2) study region off the coast of southeastern Australia. We use generalized linear model (GLM), generalized additive model (GAM) and maximum entropy (MAXENT) to build models based on co-located occurrence datasets derived from two underwater video methods (i.e. baited and towed video) and fine-scale multibeam sonar based seafloor habitat variables. Overall, this study found that the choice of modeling approach did not considerably influence the prediction of distributions based on the same occurrence dataset. However, greater dissimilarity between model predictions was observed across the nine fish taxa when the two occurrence datasets were compared (relative to models based on the same dataset). Based on these results it is difficult to draw any general trends in regards to which video method provides more reliable occurrence datasets. Nonetheless, we suggest predictions reflecting the species apparent distribution (i.e. a combination of species distribution and the probability of detecting it). Consequently, we also encourage researchers and marine managers to carefully interpret model predictions.
Related JoVE Video
Habitat specialization in tropical continental shelf demersal fish assemblages.
PLoS ONE
Show Abstract
Hide Abstract
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.
Related JoVE Video
Bait effects in sampling coral reef fish assemblages with stereo-BRUVs.
PLoS ONE
Show Abstract
Hide Abstract
Baited underwater video techniques are increasingly being utilised for assessing and monitoring demersal fishes because they are: 1) non extractive, 2) can be used to sample across multiple habitats and depths, 3) are cost effective, 4) sample a broader range of species than many other techniques, 5) and with greater statistical power. However, an examination of the literature demonstrates that a range of different bait types are being used. The use of different types of bait can create an additional source of variability in sampling programs. Coral reef fish assemblages at the Houtman Abrolhos Islands, Western Australia, were sampled using baited remote underwater stereo-video systems. One-hour stereo-video recordings were collected for four different bait treatments (pilchards, cat food, falafel mix and no bait (control)) from sites inside and outside a targeted fishery closure (TFC). In total, 5209 individuals from 132 fish species belonging to 41 families were recorded. There were significant differences in the fish assemblage structure and composition between baited and non-baited treatments (P<0.001), while no difference was observed with species richness. Samples baited with cat food and pilchards contained similar ingredients and were found to record similar components of the fish assemblage. There were no significant differences in the fish assemblages in areas open or closed to fishing, regardless of the bait used. Investigation of five targeted species indicated that the response to different types of bait was species-specific. For example, the relative abundance of Pagrus auratus was found to increase in areas protected from fishing, but only in samples baited with pilchards and cat food. The results indicate that the use of bait in conjunction with stereo-BRUVs is advantageous. On balance, the use of pilchards as a standardised bait for stereo-BRUVs deployments is justified for use along the mid-west coast of Western Australia.
Related JoVE Video
Diversity and composition of demersal fishes along a depth gradient assessed by baited remote underwater stereo-video.
PLoS ONE
Show Abstract
Hide Abstract
Continental slopes are among the steepest environmental gradients on earth. However, they still lack finer quantification and characterisation of their faunal diversity patterns for many parts of the world.
Related JoVE Video
Similarities between line fishing and baited stereo-video estimations of length-frequency: novel application of Kernel Density Estimates.
PLoS ONE
Show Abstract
Hide Abstract
Age structure data is essential for single species stock assessments but length-frequency data can provide complementary information. In south-western Australia, the majority of these data for exploited species are derived from line caught fish. However, baited remote underwater stereo-video systems (stereo-BRUVS) surveys have also been found to provide accurate length measurements. Given that line fishing tends to be biased towards larger fish, we predicted that, stereo-BRUVS would yield length-frequency data with a smaller mean length and skewed towards smaller fish than that collected by fisheries-independent line fishing. To assess the biases and selectivity of stereo-BRUVS and line fishing we compared the length-frequencies obtained for three commonly fished species, using a novel application of the Kernel Density Estimate (KDE) method and the established Kolmogorov-Smirnov (KS) test. The shape of the length-frequency distribution obtained for the labrid Choerodon rubescens by stereo-BRUVS and line fishing did not differ significantly, but, as predicted, the mean length estimated from stereo-BRUVS was 17% smaller. Contrary to our predictions, the mean length and shape of the length-frequency distribution for the epinephelid Epinephelides armatus did not differ significantly between line fishing and stereo-BRUVS. For the sparid Pagrus auratus, the length frequency distribution derived from the stereo-BRUVS method was bi-modal, while that from line fishing was uni-modal. However, the location of the first modal length class for P. auratus observed by each sampling method was similar. No differences were found between the results of the KS and KDE tests, however, KDE provided a data-driven method for approximating length-frequency data to a probability function and a useful way of describing and testing any differences between length-frequency samples. This study found the overall size selectivity of line fishing and stereo-BRUVS were unexpectedly similar.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.