JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Strategies for short-term storage of hepatocytes for repeated clinical infusions.
Cell Transplant
PUBLISHED: 09-09-2014
Show Abstract
Hide Abstract
Hepatocyte transplantation is an upcoming treatment for patients with metabolic liver diseases. Repeated cell infusions over 1-2 days improve clinical outcome. Isolated hepatocytes are usually cold stored in preservation solutions between repeated infusions. However, during cold storage isolated hepatocytes undergo cell death. We investigated if tissue preservation and repeated isolations are better than storage of isolated hepatocytes when cold preserving human hepatocytes. Liver tissue obtained from liver surgery or organ donors was divided into two pieces. Hepatocytes were isolated by collagenase digestion. Hepatocytes were analyzed directly after isolation (fresh) or after storage for 48 h at 4°C in University of Wisconsin solution (UW cells). Liver tissue from the same donor was stored at 4°C in UW and hepatocytes were isolated after 48 h (UW tissue cells). Hepatocyte viability and function was evaluated by trypan blue exclusion, plating efficiency, ammonia metabolism, CYP 1A1/2, 2C9, 3A7, and 3A4 activities, phase II conjugation, and apoptosis evaluation by TUNEL assay and caspase-3/7 activities. Hepatocytes stored in UW showed a significantly lower viability compared to fresh cells or hepatocytes isolated from tissue stored for 48 h (54% vs. 71% vs. 79%). Plating efficiency was significantly decreased for cells stored in UW (40%) compared to fresh and UW tissue cells (63% vs. 55%). No significant differences between UW cells and UW tissue cells could be shown for CYP activities or ammonia metabolism. Hepatocytes stored in UW showed a strong increase in TUNEL-positive cells, whereas TUNEL staining in cold-stored liver tissue and hepatocytes isolated after 48 h was unchanged. This observation was confirmed by increased caspase-3/7 activities in UW cells. Although preservation of isolated hepatocytes in UW maintains function, cold storage of liver tissue and repeated hepatocyte isolations is superior to cold storage of isolated hepatocytes in preserving hepatocyte viability and function.
Related JoVE Video
In situ characterization of intrahepatic non-parenchymal cells in PSC reveals phenotypic patterns associated with disease severity.
PLoS ONE
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
Liver-infiltrating T cells have been implicated in the pathogenesis of primary sclerosing cholangitis (PSC), however little information is available about changes in other cellular compartments in the liver during PSC. This study aimed to characterize non-parenchymal intrahepatic cells in PSC livers and to find associations between phenotypes and disease severity. Using immunohistochemistry, followed by automated image analysis and quantification and a principal component analysis, we have studied non-parenchymal intrahepatic cells in PSC-patient livers (n = 17) and controls (n = 17). We observed a significant increase of T cells in the PSC patients, localized to the fibrotic areas. MAIT cells, normally present at high numbers in the liver, were not increased to the same extent. PSC patients had lower expression of MHC class I than controls. However, the levels of NKp46+ NK cells were similar between patients and controls, nevertheless, NKp46 was identified as a phenotypic marker that distinguished PSC patients with mild from those with severe fibrosis. Beyond that, a group of PSC patients had lost expression of Caldesmon and this was associated with more extensive bile duct proliferation and higher numbers of T cells. Our data reveals phenotypic patterns in PSC patients associated with disease severity.
Related JoVE Video
Potency of individual bile acids to regulate bile Acid synthesis and transport genes in primary human hepatocyte cultures.
Toxicol. Sci.
PUBLISHED: 07-23-2014
Show Abstract
Hide Abstract
Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100?M for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70-95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100?M. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na(+)-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OST?/? were increased 10-100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective.
Related JoVE Video
Rapid-and-Sensitive Assessment of Human Hepatocyte Functions.
Cell Transplant
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
Transplantation of human hepatocytes (HTx) has gained recognition as a bridge to, or an alternative to orthotopic liver transplantation for patients with acute liver failure or genetic defects in liver function. Although the quality of the hepatocytes used for cell transplantation is critical, no consensus exists on protocols to assess the function of hepatocytes prior to HTx. Application of this cell therapy in clinical practice could be aided by fast and reliable assays to evaluate the functional competence of isolated hepatocytes prior to clinical transplant. Traditional assays for measuring metabolic functions in primary hepatocytes frequently involve highly technical equipment, time-consuming methods and large numbers of cells. We describe a novel approach for the rapid assessment of the metabolic capabilities of human hepatocytes. This report details simple procedures to evaluate eleven endpoints from cells isolated from human liver that can be performed by a single operator within approximately 2 hrs of isolation. Longer-term cultured hepatocytes were also analyzed to determine if the results from the 2 hrs tests were predictive of long-term hepatic function. The assays simultaneously measure five Cytochrome P450 activities, one phase II activity, plating efficiency and ammonia metabolism in addition to viability and cell yield. The assays require fewer than 20 million cells and can be completed using commonly available and inexpensive laboratory equipment. The protocol details methods that can be used in a time frame that would allow analysis of hepatic functions in freshly isolated hepatocytes prior to their use for clinical transplantation.
Related JoVE Video
Impaired postprandial fibroblast growth factor (FGF)-19 response in patients with stage 5 chronic kidney diseases is ameliorated following antioxidative therapy.
Nephrol. Dial. Transplant.
PUBLISHED: 11-02-2013
Show Abstract
Hide Abstract
While dysmetabolism is common in patients with chronic kidney disease (CKD) and associated with mortality, the mechanisms mediating these changes are unclear. New data implicate fibroblast growth factor (FGF)-19 as a possible entero-hepatic modulator of lipid metabolism.
Related JoVE Video
New potential cell source for hepatocyte transplantation: discarded livers from metabolic disease liver transplants.
Stem Cell Res
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Domino liver transplantation is a method used to increase the number of liver grafts available for orthotopic liver transplantation (OLT). Reports indicate that livers from patients with metabolic liver disease can be safely transplanted into select recipients if the donors defect and the recipients metabolic needs are carefully considered. The liver of patients with many types of metabolic liver disease is morphologically and biochemically normal, except for the mutation that characterizes that disease. Other biochemical functions normally performed by the liver are present and presumably "normal" in these hepatocytes. Hepatocytes were isolated from the liver of 35 organ donors and 35 liver tissues taken at OLT from patients with liver disease were analyzed for 9 different measures of viability and function. The data indicate that cells isolated from some diseased livers performed as well or better than those isolated from organ donors with respect to viability, cell yield, plating efficiency and in assays of liver function, including drug metabolism, conjugation reactions and ammonia metabolism. Cells from metabolic diseased livers rapidly and efficiently repopulated a mouse liver upon transplantation. Conclusions: As with domino liver transplantation, domino cell transplantation deserves consideration as method to extend the pool of available organs and cells for transplantation.
Related JoVE Video
Mice with chimeric livers are an improved model for human lipoprotein metabolism.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism.
Related JoVE Video
Development and application of purified tissue dissociation enzyme mixtures for human hepatocyte isolation.
Cell Transplant
PUBLISHED: 11-11-2011
Show Abstract
Hide Abstract
Human hepatocyte transplantation is gaining acceptance for the treatment of liver diseases. However, the reagents used to isolate hepatocytes from liver tissue are not standardized and show lot-to-lot variability in enzyme activity and endotoxin contamination. For clinical application, highly purified reagents are preferable to crude digest preparations. A purified tissue dissociating enzyme (TDE) preparation (CIzyme(TM) purified enzymes) was developed based on the enzyme compositions found in a superior lot of collagenase previously used by our group for human hepatocyte isolation. The performance of this enzyme preparation was compared to collagenase type XI on 110 liver cases by assessing hepatocyte yield, viability, and seven other functional assays that included plating efficiency, basal and induced CYP450 activities, phase II conjugation activity, and ammonia metabolism. No statistically significant difference was observed between these TDEs when they were used to isolate hepatocytes from liver resections or organ donor tissue on 54 hepatocyte isolations with type XI enzyme and 56 isolations using CIzyme(TM). These results show that a highly purified and defined TDE preparation can be formulated that provides excellent performance with respect to viability, yield, and functional activity of the isolated cells. In addition to reproducible formulation, these purified enzyme products have only 2-3% of the endotoxin of crude enzyme preparations. These results show that purified enzymes such as CIzyme(TM) will be a safe and effective for the isolation of human hepatocytes for clinical transplants.
Related JoVE Video
Hepatic differentiation of amniotic epithelial cells.
Hepatology
PUBLISHED: 03-05-2011
Show Abstract
Hide Abstract
Hepatocyte transplantation to treat liver disease is largely limited by the availability of useful cells. Human amniotic epithelial cells (hAECs) from term placenta express surface markers and gene characteristics of embryonic stem cells and have the ability to differentiate into all three germ layers, including tissues of endodermal origin (i.e., liver). Thus, hAECs could provide a source of stem cell-derived hepatocytes for transplantation. We investigated the differentiation of hAECs in vitro and after transplantation into the livers of severe combined immunodeficient (SCID)/beige mice. Moreover, we tested the ability of rat amniotic epithelial cells (rAECs) to replicate and differentiate upon transplantation into a syngenic model of liver repopulation. In vitro results indicate that the presence of extracellular matrix proteins together with a mixture of growth factors, cytokines, and hormones are required for differentiation of hAECs into hepatocyte-like cells. Differentiated hAECs expressed hepatocyte markers at levels comparable to those of fetal hepatocytes. They were able to metabolize ammonia, testosterone, and 17?-hydroxyprogesterone caproate, and expressed inducible fetal cytochromes. After transplantation into the liver of retrorsine (RS)-treated SCID/beige mice, naïve hAECs differentiated into hepatocyte-like cells that expressed mature liver genes such as cytochromes, plasma proteins, transporters, and other hepatic enzymes at levels equal to adult liver tissue. When transplanted in a syngenic animal pretreated with RS, rAECs were able to engraft and generate a progeny of cells with morphology and protein expression typical of mature hepatocytes.
Related JoVE Video
Overexpression of cholesterol 7?-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis.
Hepatology
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
We reported previously that mice overexpressing cytochrome P450 7a1 (Cyp7a1; Cyp7a1-tg mice) are protected against high fat diet-induced hypercholesterolemia, obesity, and insulin resistance. Here, we investigated the underlying mechanism of bile acid signaling in maintaining cholesterol homeostasis in Cyp7a1-tg mice. Cyp7a1-tg mice had two-fold higher Cyp7a1 activity and bile acid pool than did wild-type mice. Gallbladder bile acid composition changed from predominantly cholic acid (57%) in wild-type to chenodeoxycholic acid (54%) in Cyp7a1-tg mice. Cyp7a1-tg mice had higher biliary and fecal cholesterol and bile acid secretion rates than did wild-type mice. Surprisingly, hepatic de novo cholesterol synthesis was markedly induced in Cyp7a1-tg mice but intestine fractional cholesterol absorption in Cyp7a1-tg mice remained the same as wild-type mice despite the presence of increased intestine bile acids. Interestingly, hepatic but not intestinal expression of several cholesterol (adenosine triphosphate-binding cassette G5/G8 [ABCG5/G8], scavenger receptor class B, member 1) and bile acid (ABCB11) transporters were significantly induced in Cyp7a1-tg mice. Treatment of mouse or human hepatocytes with a farnesoid X receptor (FXR) agonist GW4064 or bile acids induced hepatic Abcg5/g8 expression. A functional FXR binding site was identified in the Abcg5 gene promoter. Study of tissue-specific Fxr knockout mice demonstrated that loss of the Fxr gene in the liver attenuated bile acid induction of hepatic Abcg5/g8 and gallbladder cholesterol content, suggesting a role of FXR in the regulation of cholesterol transport.
Related JoVE Video
The use of human hepatocytes to investigate bile acid synthesis.
Methods Mol. Biol.
PUBLISHED: 07-21-2010
Show Abstract
Hide Abstract
De novo synthesis of bile acids is a liver-specific function that is difficult to maintain in cultured cells. There are significant species differences in both types of bile acids formed and more importantly in the regulation of bile acid homeostasis. This highlights the need for a good human in vitro model. Isolated primary human hepatocytes have the capacity to synthesize normal conjugated bile acids at a rate similar to that in vivo. In this chapter we describe the importance of different culture conditions such as choice of substrate, media and supplements on the total bile acid production as wells as the bile acid composition.
Related JoVE Video
A novel bile acid-activated vitamin D receptor signaling in human hepatocytes.
Mol. Endocrinol.
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
Vitamin D receptor (VDR) is activated by natural ligands, 1alpha, 25-dihydroxy-vitamin D(3) [1alpha,25(OH)(2)-D(3)] and lithocholic acid (LCA). Our previous study shows that VDR is expressed in human hepatocytes, and VDR ligands inhibit bile acid synthesis and transcription of the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1). Primary human hepatocytes were used to study LCA and 1alpha,25(OH)(2)-D(3) activation of VDR signaling. Confocal immunofluorescent microscopy imaging and immunoblot analysis showed that LCA and 1alpha, 25(OH)(2)-D(3) induced intracellular translocation of VDR from the cytosol to the nucleus and also plasma membrane where VDR colocalized with caveolin-1. VDR ligands induced tyrosine phosphorylation of c-Src and VDR and their interaction. Inhibition of c-Src abrogated VDR ligand-dependent inhibition of CYP7A1 mRNA expression. Kinase assays showed that VDR ligands specifically activated the c-Raf/MEK1/2/extracellular signal-regulated kinase (ERK) 1/2 pathway, which stimulates serine phosphorylation of VDR and hepatocyte nuclear factor-4alpha, and their interaction. Mammalian two-hybrid assays showed a VDR ligand-dependent interaction of nuclear receptor corepressor-1 and silencing mediator of retinoid and thyroid with VDR/retinoid X receptor-alpha (RXRalpha). Chromatin immunoprecipitation assays revealed that an ERK1/2 inhibitor reversed VDR ligand-induced recruitment of VDR, RXRalpha, and corepressors to human CYP7A1 promoter. In conclusion, VDR ligands activate membrane VDR signaling to activate the MEK1/2/ERK1/2 pathway, which stimulates nuclear VDR/RXRalpha recruitment of corepressors to inhibit CYP7A1 gene transcription in human hepatocytes. This membrane VDR-signaling pathway may be activated by bile acids to inhibit bile acid synthesis as a rapid response to protect hepatocytes from cholestatic liver injury.
Related JoVE Video
Isolation of amniotic mesenchymal stem cells.
Curr Protoc Stem Cell Biol
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Mesenchymal stem cells (MSCs) have the ability to differentiate into osteocytes, chondrocytes, and adipocytes and possess immunomodulatory properties. Amniotic membrane from human term placenta is a potential source of multipotent MSCs that could be useful for regenerative medicine. This unit describes a detailed and simple protocol for the isolation of amniotic mesenchymal cells. We also introduce a simple density separation technique for the purification of this cell type from possible contamination with amniotic epithelial cells.
Related JoVE Video
GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response.
Genes Dev.
PUBLISHED: 02-18-2010
Show Abstract
Hide Abstract
The orphan receptor LRH-1 and the oxysterol receptors LXRalpha and LXRbeta are established transcriptional regulators of lipid metabolism that appear to control inflammatory processes. Here, we investigate the anti-inflammatory actions of these nuclear receptors in the hepatic acute phase response (APR). We report that selective synthetic agonists induce SUMOylation-dependent recruitment of either LRH-1 or LXR to hepatic APR promoters and prevent the clearance of the N-CoR corepressor complex upon cytokine stimulation. Investigations of the APR in vivo, using LXR knockout mice, indicate that the anti-inflammatory actions of LXR agonists are triggered selectively by the LXRbeta subtype. We further find that hepatic APR responses in small ubiquitin-like modifier-1 (SUMO-1) knockout mice are increased, which is due in part to diminished LRH-1 action at APR promoters. Finally, we provide evidence that the metabolically important coregulator GPS2 functions as a hitherto unrecognized transrepression mediator of interactions between SUMOylated nuclear receptors and the N-CoR corepressor complex. Our study extends the knowledge of anti-inflammatory mechanisms and pathways directed by metabolic nuclear receptor-corepressor networks to the control of the hepatic APR, and implies alternative pharmacological strategies for the treatment of human metabolic diseases associated with inflammation.
Related JoVE Video
Metabolism of 17alpha-hydroxyprogesterone caproate, an agent for preventing preterm birth, by fetal hepatocytes.
Drug Metab. Dispos.
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
Preterm delivery (i.e., delivery before 37 completed weeks of gestation) is a major determinant of neonatal morbidity and mortality. Until recently, no effective therapies for prevention of preterm birth existed. In a recent multicentered trial, 17alpha-hydroxyprogesterone caproate (17-OHPC) was shown to reduce the rate of preterm birth by 33% in a group of high-risk women. Limited pharmacologic data exist for this drug. Previous studies have shown that CYP3A is involved in the metabolism of 17-OHPC. In this study, we evaluated the metabolism of 17-OHPC in adult and fetal human hepatocytes and in expressed cytochrome P450 enzymes. 17-OHPC was metabolized by expressed CYP3A7 and by fetal hepatocytes. The metabolite profile was qualitatively different between expressed CYP3A4 and CYP3A7. Expressed CYP3A4 demonstrated a significantly higher (>10 times) capacity to metabolize 17-OHPC than CYP3A7. Based on retention times, two unique metabolites were observed in the fetal and adult hepatocyte systems along with one common metabolite. The intrinsic clearance of 17-OHPC by fetal hepatocytes was observed to be one-half of that in adults. In summary, this study demonstrates that fetal hepatocytes and, in particular, the fetal form of CYP3A (i.e., CYP3A7) can metabolize 17-OHPC.
Related JoVE Video
Isolation of amniotic epithelial stem cells.
Curr Protoc Stem Cell Biol
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Many of the cell types that can be isolated from placental tissues retain phenotypic plasticity that makes them an interesting source of cells for regenerative medicine. Several procedures for the isolation of stem cells from different parts of the placenta have been reported. This unit describes a detailed and simple protocol for the selective isolation of amniotic epithelial cells from human term placenta without disturbing the mesenchymal layer. We also introduce a simple density separation technique for the enrichment of the population for SSEA-4 positive cells.
Related JoVE Video
The human ADFP gene is a direct liver-X-receptor (LXR) target gene and differentially regulated by synthetic LXR ligands.
Mol. Pharmacol.
PUBLISHED: 10-20-2009
Show Abstract
Hide Abstract
Expression of adipocyte differentiation-related protein (ADFP), residing on the surface of lipid droplets, correlates to hepatic fat storage. In the context of consequences and treatment of metabolic disorders, including hepatic steatosis, it is imperative to gain knowledge about the regulation of the human ADFP gene. The nuclear receptor liver-X-receptor (LXR) is a key regulator of hepatic fatty acid biosynthesis and cholesterol homeostasis as well as a potential drug target. Here, we report that two synthetic LXR ligands differently regulate human ADFP expression. The partial LXR agonist 3-[3-[[[2-chloro-3-(trifluoromethyl)phenyl]methyl](2,2- diphenylethyl)amino]propoxy]benzeneacetic acid hydrochloride (GW3965) significantly induces ADFP expression in human primary hepatocytes, whereas the full agonist N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1(trifluoromethyl)ethyl]phenyl] benzenesulfonamide (T0901317) does not. Bioinformatics analysis revealed several potential LXR response elements (LXREs) in the human ADFP gene. By using chromatin immunoprecipitation and luciferase reporter assays, we show that LXR, upon stimulation with GW3965, directly regulates human ADFP transcription by binding to LXREs located in the 3-untranslated and the 5-flanking regions. The ligand-stimulated LXR recruitment was associated with recruitment of RNA polymerase II and the coactivators cAMP response element-binding protein-binding protein/p300 to the promoter region demonstrating that the identified LXREs are functional and able to induce transcription. Moreover, our results show that sequence identity of the hexamer repeats in DR4 elements is not sufficient to determine whether the element binds LXR or not. The partial agonist GW3965 specifically regulates ADFP gene transcription, and our data prove that the two synthetic LXR agonists, commonly used in experimental research, can differentially regulate gene expression. This has implications for pharmaceutical targeting of LXR.
Related JoVE Video
Hepatocyte transplantation improves phenotype and extends survival in a murine model of intermediate maple syrup urine disease.
Mol. Ther.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain alpha-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (10(5) cells/50 microl) into liver of iMSUD mice (two injections at 1-10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)-treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation.
Related JoVE Video
Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin-proteasomal degradation.
Genes Dev.
PUBLISHED: 04-25-2009
Show Abstract
Hide Abstract
Small Heterodimer Partner (SHP) inhibits activities of numerous transcription factors involved in diverse biological pathways. As an important metabolic regulator, SHP plays a key role in maintaining cholesterol and bile acid homeostasis by inhibiting cholesterol conversion to bile acids. While SHP gene induction by increased bile acids is well established, whether SHP activity is also modulated remains unknown. Here, we report surprising findings that SHP is a rapidly degraded protein via the ubiquitin-proteasomal pathway and that bile acids or bile acid-induced intestinal fibroblast growth factor 19 (FGF19) increases stability of hepatic SHP by inhibiting proteasomal degradation in an extracellular signal-regulated kinase (ERK)-dependent manner. SHP was ubiquitinated at Lys122 and Lys123, and mutation of these sites altered its stability and repression activity. Tandem mass spectrometry revealed that upon bile acid treatment, SHP was phosphorylated at Ser26, within an ERK motif in SHP, and mutation of this site dramatically abolished SHP stability. Surprisingly, SHP stability was abnormally elevated in ob/ob mice and diet-induced obese mice. These results demonstrate an important role for regulation of SHP stability in bile acid signaling in normal conditions, and that abnormal stabilization of SHP may be associated with metabolic disorders, including obesity and diabetes.
Related JoVE Video
Differentiation and transplantation of human embryonic stem cell-derived hepatocytes.
Gastroenterology
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
The ability to obtain unlimited numbers of human hepatocytes would improve the development of cell-based therapies for liver diseases, facilitate the study of liver biology, and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, potentially can differentiate into any cell type, and therefore could be developed as a source of human hepatocytes.
Related JoVE Video
Production of hepatocyte-like cells from human amnion.
Methods Mol. Biol.
PUBLISHED: 03-21-2009
Show Abstract
Hide Abstract
Cells isolated from the placenta have been the subject of intense investigation because many of the cells express characteristics of multipotent or even pluripotent stem cells. Cells from the placental tissues such as amnion and chorion have been reported to display multilineage differentiation and surface marker and gene expression patterns consistent with embryonic stem (ES) and mesenchymal stem cells, respectively. We have reported that epithelial cells isolated from term placenta contain cells that express surface markers such as the stage-specific embryonic antigens (SSEA) and a gene expression profile that is similar to ES cells. When subjected to specific differentiation protocols, amniotic epithelial cells display markers of differentiation to cardiomyocytes, neurons, pancreatic cells and hepatocytes. If specific and efficient methods could be developed to induce differentiation of these cells to hepatocytes, the amnion may become a useful source of cells for hepatocyte transplants. Cells isolated from amnion also have some unique properties as compared to some other stem cell sources in that they are isolated from a tissue that is normally discarded following birth, they are quite plentiful and easily isolated and they do not produce tumors when transplanted. Cells isolated from the amnion may be a uniquely useful and noncontroversial stem cell source.
Related JoVE Video
Human pregnane X receptor activation and CYP3A4/CYP2B6 induction by 2,3-oxidosqualene:lanosterol cyclase inhibition.
Drug Metab. Dispos.
PUBLISHED: 01-21-2009
Show Abstract
Hide Abstract
The effects of [4-(6-allyl-methyl-amino-hexyloxy)-2-fluoro-phenyl]-(4-bromophenyl)-methanone fumarate (Ro 48-8071), an inhibitor of 2,3-oxidosqualene:lanosterol cyclase (cyclase), were evaluated on CYP3A4 and CYP2B6 mRNA content in primary cultured human hepatocytes. In seven hepatocyte culture preparations, 24-h treatment with 3, 10, or 30 microM Ro 48-8071 produced median increases in CYP3A4 mRNA content that were 2.2-, 7.1-, and 8.5-fold greater than untreated control, respectively, and produced increases in CYP2B6 mRNA content that were 3.0-, 4.6-, and 3.4-fold greater than control, respectively. Increases in CYP3A4 immunoreactive protein content were also measured in Ro 48-8071-treated hepatocytes. To evaluate the effects of cyclase inhibitor treatments further, a pregnane X receptor (PXR)-responsive transactivation assay in HepG2 cells was used. Ro 48-8071, trans-N-(4-chlorobenzoyl)-N-methyl-(4-dimethylaminomethylphenyl)-cyclohexylamine (BIBX 79), and 3beta-(2-diethylaminoethoxy)androst-5-en-17-one HCl (U18666A) induced luciferase expression from a PXR-responsive reporter with EC(50)s of 0.113, 0.916, and 0.294 microM, respectively. Treatment of the HepG2 system with (E)N-ethyl-N-(6,6-dimethyl-2-hepten-4-ynyl)-3-[(3,3-bithiophen-5-yl)methoxy]benzenemethanamine (NB-598), an inhibitor of squalene monooxygenase, at concentrations sufficient to achieve cholesterol biosynthesis inhibition significantly inhibited cyclase inhibitor-mediated, but not rifampicin-mediated, reporter induction. Direct treatment of the HepG2 system with 1 to 10 microM squalene 2,3:22,23-dioxide, but not squalene 2,3-oxide, significantly activated PXR-responsive reporter expression. Also, squalene 2,3:22,23-dioxide bound to human PXR in vitro with an IC(50) of 3.35 microM. These data indicate that cyclase inhibitors are capable of producing CYP3A4 and CYP2B6 induction in primary cultured human hepatocytes, and that an endogenous squalene metabolite is a conserved intracrine activator of PXR.
Related JoVE Video
Long term cultures of primary human hepatocytes as an alternative to drug testing in animals.
ALTEX
PUBLISHED: 01-01-2009
Show Abstract
Hide Abstract
Due to species differences, primary human hepatocytes are still the in vitro system of choice to analyse liver specific processes and functions. Human hepatocytes were cultured for several weeks in a serum-free two-dimensional culture system, which was used to study the effects of acetaminophen (APAP) on hepatocellular functions and vitality. Non-invasive determinations of albumin, urea and lactate dehydrogenase concentrations in cell culture supernatants allowed continuous monitoring for at least two weeks. APAP was applied every 4 days for 24 h. Each application reduced urea production by 25% and albumin synthesis by approximately 70% without any effects on cellular viability. After removal of the substance, hepatocellular functions returned to control levels within one (urea) to three (albumin) days. The repetitive analyses of APAP-mediated effects on cellular metabolism led to identical results for up to five cycles. The drug also caused reversible and repetitive ultrastructural modifications, in particular an almost complete replacement of rough endoplasmic reticulum by smooth endoplasmic reticulum and a massive degradation of glycogen stores. The data demonstrate the suitability of the culture system to serve as a model for repetitive testing of drug-mediated changes on hepatocellular functions, thereby reducing animal studies during drug development.
Related JoVE Video
Hepatobiliary disposition of 17-OHPC and taurocholate in fetal human hepatocytes: a comparison with adult human hepatocytes.
Drug Metab. Dispos.
Show Abstract
Hide Abstract
Little information is available in the literature regarding the expression and activity of transporters in fetal human liver or cultured cells. A synthetic progesterone structural analog, 17?-hydroxyprogesterone caproate (17-OHPC), is used in the prevention of spontaneous abortion in women with a history of recurrent miscarriage (habitual abortion). 17-OHPC has been reported to traverse the placental barrier and gain access to fetal circulation. In this study, the role of transporters in the disposition of 17-OHPC in fetal and adult human hepatocytes was examined. Progesterone metabolites have been reported to induce trans-inhibition of bile acid transporter, ABCB11. Thus, we investigated the effect of 17-OHPC or its metabolites on [(3)H]taurocholic acid transport in sandwich-cultured human fetal and adult hepatocytes. 17-OHPC was taken up rapidly into the cells and transported out partially by an active efflux process that was significantly inhibited by cold temperature, cyclosporine, verapamil, and rifampin. The active efflux mechanism was observed in both adult and fetal hepatocyte cultures. 17-OHPC produced a concentration-dependent inhibition of taurocholate efflux into canaliculi in sandwich-cultured adult and fetal human hepatocytes. However, given the high concentrations required to cause inhibition of these transport processes, no adverse effects would be anticipated from therapeutic levels of 17-OHPC. We also evaluated the expression of various hepatic transporters (ABCB1, ABCB4, SLCO1B1, SLCO1B3, SLCO2B1, ABCB11, SLC10A1, ABCC2, ABCC3, ABCC4, and ABCG2) in fetal and adult hepatocytes. With the exception of ABCB4, all transporters examined were expressed, albeit at lower mRNA levels in fetal hepatocytes compared with adults.
Related JoVE Video
Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system.
J. Pharmacol. Exp. Ther.
Show Abstract
Hide Abstract
The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17?-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.
Related JoVE Video
In vitro evaluation of major in vivo drug metabolic pathways using primary human hepatocytes and HepaRG cells in suspension and a dynamic three-dimensional bioreactor system.
J. Pharmacol. Exp. Ther.
Show Abstract
Hide Abstract
Major human specific metabolites, not detected during in vivo and in vitro preclinical studies, may cause unexpected drug interactions and toxicity in human and delays in clinical programs. Thus, reliable preclinical tools for the detection of major human metabolites are of high importance. The aim of this study was to compare major drug metabolic pathways in HepaRG cells, a human hepatoma cell line, to fresh human hepatocytes, cryopreserved human hepatocytes, and human in vivo data. Furthermore, the maintenance of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) activities in a dynamic three-dimensional (3D) bioreactor were evaluated over time by using HepaRG cells and human hepatocytes. (14)C-diclofenac and a candidate from AstraZenecas drug development program, (14)C-AZD6610, which are metabolized by P450 and UGT in vivo, were used as model substrates. The proportion of relevant biotransformation pathways of the investigated drug was clearly different in the various cell systems. The hydroxylation route was favored in primary human hepatocytes, whereas the glucuronidation route was favored in HepaRG cells. The human in vivo metabolite profile of AZD6610 was best represented by human hepatocytes, whereas all major diclofenac metabolites were detected in HepaRG cells. Moreover, the metabolite profiles in cryopreserved and fresh human hepatocytes were essentially the same. The liver bioreactor using both fresh human hepatocytes and HepaRG cells retained biotransformation capacity over 1 week. Thus, the incubation time can be increased from a few hours in suspension to several days in 3D cultures, which opens up for detection of metabolites from slowly metabolized drugs.
Related JoVE Video
Related JoVE Video
Hypothermic storage of human hepatocytes for transplantation.
Cell Transplant
Show Abstract
Hide Abstract
Transplantation of human hepatocytes is gaining recognition as a bridge or an alternative to orthotopic liver transplantation for patients with acute liver failure and genetic defects. Since most patients require multiple cell infusions over an extended period of time, we investigated hepatic functions in cells maintained in University of Wisconsin solution at 4°C up to 72h. Eleven different assessments of hepatic viability and function were investigated both pre and post hypothermic storage, including plating efficiency, caspase 3/7 activity, ammonia metabolism and drug metabolizing capacity of isolated hepatocytes. Long-term function, basal and induced cytochrome P450 activities were measured after exposure to prototypical inducing agents. Cells from 47 different human liver specimens were analyzed. Viability significantly decreased in cells cold-stored in UW solution, while apoptosis level and plating efficiency were not significantly different from fresh cells. Luminescent and fluorescent methods assessed phase I and II activities both pre and post 24-72h of cold preservation. A robust induction (up to 200-fold) of phase I enzymes was observed in cultured cells. Phase II and ammonia metabolism remained stable during hypothermic storage although the inductive effect of culture on each metabolic activity was eventually lost. Using techniques that characterize 11 measurements of hepatic viability and function from plating efficiency, to ammonia metabolism, to phase I and II drug metabolism, it was determined that while viability decreased, the remaining viable cells in cold-stored suspensions retained critical hepatic functions for up to 48 h at levels not significantly different from those observed in freshly isolated cells.
Related JoVE Video
Hepatocyte transplantation ameliorates the metabolic abnormality in a mouse model of acute intermittent porphyria.
Cell Transplant
Show Abstract
Hide Abstract
BackgroundAcute intermittent porphyria (AIP) is an autosomal dominant disorder characterized byinsufficient porphobilinogen deaminase (PBGD) activity. When hepatic heme synthesis isinduced, porphobilinogen (PBG) and 5-aminolevulinic acid (ALA) accumulate, which causesclinical symptoms such as abdominal pain, neuropathy and psychiatric disturbances.AimOur aim was to investigate if hepatocyte transplantation can prevent or minimize themetabolic alterations in an AIP mouse model.MethodsWe transplanted wild-type hepatocytes into AIP deficient mice and induced heme synthesiswith phenobarbital. ALA and PBG concentrations in plasma were monitored and the genetranscriptions of hepatic enzymes ALAS1, PBGD and CYP2A5 were analyzed. Results werecompared with controls and correlated to the percentage of engrafted hepatocytes.ResultsThe accumulation of ALA and PBG was reduced by approximately 50 % after the secondhepatocyte transplantation. We detected no difference in mRNA levels of PBGD, ALAS1 orCyp2A5. Engraftment corresponding to 2.7 % of the total hepatocyte mass was achievedfollowing two hepatocytes transplantations.ConclusionA lack of precursor production in less than three percent of the hepatocytes resulted in a 50 %reduction in plasma precursor concentrations. This disproportional finding suggests that ALAand PBG produced in PBGD deficient hepatocytes crossed cellular membranes and wasmetabolized by transplanted cells. The lack of effect on enzyme mRNA levels, suggests thatno significant efflux of heme from normal to PBGD-deficient hepatocytes takes place. Furtherstudies are needed to establish the minimal number of engrafted hepatocytes needed tocompletely correct the metabolic abnormality in AIP and whether amelioration of themetabolic defect by partial restoration of PBGD enzyme activity translates into a clinicaleffect in human AIP.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.