JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Deletion of small ankyrin 1 (sAnk1) isoforms results in structural and functional alterations in aging skeletal muscles fibers.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
Muscle-specific ankyrins 1 (sAnk1) are a group of small ankyrin 1 isoforms, of which sAnk1.5 is the most abundant. sAnk1 are localized in the sarcoplasmic reticulum (SR) membrane from where they interact with obscurin, a myofibrillar protein. This interaction appears to contribute to stabilize the SR close to the myofibrils. Here we report the structural and functional characterization of skeletal muscles from sAnk1 knockout mice (KO). Deletion of sAnk1 did not change the expression and localization of SR proteins in 4-6 month old sAnk1 KO mice. Structurally, the main modification observed in skeletal muscles of adult sAnk1 KO mice (4-6 months of age) was the reduction of SR volume at the sarcomere A band level. With increasing age (at 12-15 months) EDL skeletal muscles of sAnk1 KO mice develop prematurely large tubular aggregates, whereas diaphragm undergoes significant structural damage. Parallel functional studies revealed specific changes in the contractile performance of muscles from sAnk1 KO mice and a reduced exercise tolerance in an endurance test on treadmill compared to control mice. Moreover, reduced Q? charge and L-type Ca(2+)current, that are indexes of affected e-c coupling, were observed in diaphragm fibers from 12-15 month old mice, but not in other skeletal muscles from sAnk1 KO mice. Altogether, these findings show that the ablation of sAnk1, by altering the organization of the SR, renders skeletal muscles susceptible to undergo structural and functional alterations more evident with age, and point to an important contribution of sAnk1 to the maintenance of the longitudinal SR architecture.
Related JoVE Video
Influence of obestatin on the gastric longitudinal smooth muscle from mice: mechanical and electrophysiological studies.
Am. J. Physiol. Gastrointest. Liver Physiol.
PUBLISHED: 08-29-2013
Show Abstract
Hide Abstract
Obestatin is a hormone released from the stomach deriving from the same peptide precursor as ghrelin. It is known to act as an anorectic hormone decreasing food intake, but contrasting results have been reported about the effects of obestatin on gastrointestinal motility. The aim of the present study was to investigate whether this peptide may act on the gastric longitudinal smooth muscle by using a combined mechanical and electrophysiological approach. When fundal strips from mice were mounted in organ baths for isometric recording of the mechanical activity, obestatin caused a tetrodotoxin-insensitive decrease of the basal tension and a reduction in amplitude of the neurally induced cholinergic contractile responses, even in the presence of the nitric oxide synthesis inhibitor N(G)-nitro-l-arginine. Obestatin reduced the amplitude of the response to the ganglionic stimulating agent dimethylphenyl piperazinium iodide but did not influence that to methacholine. In nonadrenergic, noncholinergic conditions, obestatin still decreased the basal tension of the preparations without influencing the neurally induced relaxant responses. For comparison, in circular fundal strips, obestatin had no effects. Notably, in the longitudinal antral ones, obestatin only caused a decrease of the basal tension. Electrophysiological experiments, performed by a single microelectrode inserted in a gastric longitudinal smooth muscle cell, showed that obestatin had similar effects in fundal and antral preparations: it decreased the resting specific membrane conductance, inhibited Ca(2+) currents, and positively shifted their voltage threshold of activation. In conclusion, the present results indicate that obestatin influences gastric smooth muscle exerting site-specific effects.
Related JoVE Video
Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.
Related JoVE Video
Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action.
J. Cell. Physiol.
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Mesenchymal stromal cells (MSCs) are a promising cell candidate in tissue engineering and regenerative medicine. Their proliferative potential can be increased by low-level laser irradiation (LLLI), but the mechanisms involved remain to be clarified. With the aim of expanding the therapeutic application of LLLI to MSC therapy, in the present study we investigated the effects of 635 nm diode laser on mouse MSC proliferation and investigated the underlying cellular and molecular mechanisms, focusing the attention on the effects of laser irradiation on Notch-1 signal activation and membrane ion channel modulation. It was found that MSC proliferation was significantly enhanced after laser irradiation, as judged by time lapse videomicroscopy and EdU incorporation. This phenomenon was associated with the up-regulation and activation of Notch-1 pathway, and with increased membrane conductance through voltage-gated K(+) , BK and Kir, channels and T- and L-type Ca(2+) channels. We also showed that MSC proliferation was mainly dependent on Kir channel activity, on the basis that the cell growth and Notch-1 up-regulation were severely decreased by the pre-treatment with the channel inhibitor Ba(2+) (0.5 mM). Interestingly, the channel inhibition was also able to attenuate the stimulatory effects of diode laser on MSCs, thus providing novel evidence to expand our knowledge on the mechanisms of biostimulation after LLLI. In conclusions, our findings suggest that diode laser may be a valid approach for the preconditioning of MSCs in vitro prior cell transplantation.
Related JoVE Video
Muscular effects of orexin A on the mouse duodenum: mechanical and electrophysiological studies.
J. Physiol. (Lond.)
PUBLISHED: 09-12-2011
Show Abstract
Hide Abstract
Orexin A (OXA) has been reported to influence gastrointestinal motility, acting at both central and peripheral neural levels. The aim of the present study was to evaluate whether OXA also exerts direct effects on the duodenal smooth muscle. The possible mechanism of action involved was investigated by employing a combined mechanical and electrophysiological approach. Duodenal segments were mounted in organ baths for isometric recording of the mechanical activity. Ionic channel activity was recorded in current- and voltage-clamp conditions by a single microelectrode inserted in a duodenal longitudinal muscle cell. In the duodenal preparations, OXA (0.3 ?M) caused a TTX-insensitive transient contraction. Nifedipine (1 ?M), as well as 2-aminoethyl diphenyl borate (10 ?M), reduced the amplitude and shortened the duration of the response to OXA, which was abolished by Ni(2+) (50 ?M) or TEA (1 mM). Electrophysiological studies in current-clamp conditions showed that OXA caused an early depolarization, which paralleled in time the contractile response, followed by a long-lasting depolarization. Such a depolarization was triggered by activation of receptor-operated Ca(2+) channels and enhanced by activation of T- and L-type Ca(2+) channels and store-operated Ca(2+) channels and by inhibition of K(+) channels. Experiments in voltage-clamp conditions demonstrated that OXA affects not only receptor-operated Ca(2+) channels, but also the maximal conductance and kinetics of activation and inactivation of Na(+), T- and L-type Ca(2+) voltage-gated channels. The results demonstrate, for the first time, that OXA exerts direct excitatory effects on the mouse duodenal smooth muscle. Finally, this work demonstrates new findings related to the expression and kinetics of the voltage-gated channel types, as well as store-operated Ca(2+) channels.
Related JoVE Video
Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction.
J. Cell. Mol. Med.
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
Skeletal muscle regeneration is severely compromised in the case of extended damage. The current challenge is to find factors capable of limiting muscle degeneration and/or potentiating the inherent regenerative program mediated by a specific type of myoblastic cells, the satellite cells. Recent studies from our groups and others have shown that the bioactive lipid, sphingosine 1-phosphate (S1P), promotes myoblast differentiation and exerts a trophic action on denervated skeletal muscle fibres. In the present study, we examined the effects of S1P on eccentric contraction (EC)-injured extensor digitorum longus muscle fibres and resident satellite cells. After EC, skeletal muscle showed evidence of structural and biochemical damage along with significant electrophysiological changes, i.e. reduced plasma membrane resistance and resting membrane potential and altered Na(+) and Ca(2+) current amplitude and kinetics. Treatment with exogenous S1P attenuated the EC-induced tissue damage, protecting skeletal muscle fibre from apoptosis, preserving satellite cell viability and affecting extracellular matrix remodelling, through the up-regulation of matrix metalloproteinase 9 (MMP-9) expression. S1P also promoted satellite cell renewal and differentiation in the damaged muscle. Notably, EC was associated with the activation of sphingosine kinase 1 (SphK1) and with increased endogenous S1P synthesis, further stressing the relevance of S1P in skeletal muscle protection and repair/regeneration. In line with this, the treatment with a selective SphK1 inhibitor during EC, caused an exacerbation of the muscle damage and attenuated MMP-9 expression. Together, these findings are in favour for a role of S1P in skeletal muscle healing and offer new clues for the identification of novel therapeutic approaches to counteract skeletal muscle damage and disease.
Related JoVE Video
Functional interaction between TRPC1 channel and connexin-43 protein: a novel pathway underlying S1P action on skeletal myogenesis.
Cell. Mol. Life Sci.
PUBLISHED: 02-19-2010
Show Abstract
Hide Abstract
We recently demonstrated that skeletal muscle differentiation induced by sphingosine 1-phosphate (S1P) requires gap junctions and transient receptor potential canonical 1 (TRPC1) channels. Here, we searched for the signaling pathway linking the channel activity with Cx43 expression/function, investigating the involvement of the Ca(2+)-sensitive protease, m-calpain, and its targets in S1P-induced C2C12 myoblast differentiation. Gene silencing and pharmacological inhibition of TRPC1 significantly reduced Cx43 up-regulation and Cx43/cytoskeletal interaction elicited by S1P. TRPC1-dependent functions were also required for the transient increase of m-calpain activity/expression and the subsequent decrease of PKC? levels. Remarkably, Cx43 expression in S1P-treated myoblasts was reduced by m-calpain-siRNA and enhanced by pharmacological inhibition of classical PKCs, stressing the relevance for calpain/PKC? axis in Cx43 protein remodeling. The contribution of this pathway in myogenesis was also investigated. In conclusion, these findings provide novel mechanisms by which S1P regulates myoblast differentiation and offer interesting therapeutic options to improve skeletal muscle regeneration.
Related JoVE Video
Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model.
Cell. Mol. Life Sci.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
Glucagon-like peptide-1 (GLP-1) is an insulinotropic peptide with neurotrophic properties, as assessed in animal cell models. Exendin-4, a GLP-1 analogue, has been recently approved for the treatment of type 2 diabetes mellitus. The aim of this study was to morphologically, structurally, and functionally characterize the differentiating actions of exendin-4 using a human neuronal cell model (i.e., SH-SY5Y cells). We found that exendin-4 increased the number of neurites paralleled by dramatic changes in intracellular actin and tubulin distribution. Electrophysiological analyses showed an increase in cell membrane surface and in stretch-activated-channels sensitivity, an increased conductance of Na(+) channels and amplitude of Ca(++) currents (T- and L-type), typical of a more mature neuronal phenotype. To our knowledge, this is the first demonstration that exendin-4 promotes neuronal differentiation in human cells. Noteworthy, our data support the claimed favorable role of exendin-4 against diabetic neuropathy as well as against different neurodegenerative diseases.
Related JoVE Video
A subpopulation of rat muscle fibers maintains an assessable excitation-contraction coupling mechanism after long-standing denervation despite lost contractility.
J. Neuropathol. Exp. Neurol.
PUBLISHED: 11-17-2009
Show Abstract
Hide Abstract
To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ryanodine receptor 1 (RYR-1), Ca channels and extrusion Ca pumps, gene transcription and translation of Ca-handling proteins, and in vitro mechanical properties and electrophysiological analyses of sarcolemmal passive properties and L-type Ca current (ICa) parameters. We found that in response to long-term denervation: 1) isolated muscle that is unable to twitch in vitro by electrical stimulation has very small myofibers but may show a slow caffeine contracture; 2) only roughly half of the muscle fibers with "voltage-dependent Ca channel activity" are able to contract; 3) the ECC mechanisms are still present and, in part, functional; 4)ECC-related gene expression is upregulated; and 5) at any time point, there are muscle fibers that are more resistant than others to denervation atrophy and disorganization of the ECC apparatus. These results support the hypothesis that prolonged "resting" [Ca] may drive progression of muscle atrophy to degeneration and that electrical stimulation-induced [Ca] modulation may mimic the lost nerve influence, playing a key role in modifying the gene expression of denervated muscle. Hence, these data provide a potential molecular explanation for the muscle recovery that occurs in response to rehabilitation strategies developed based on empirical clinical observations.
Related JoVE Video
Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue.
FASEB J.
PUBLISHED: 07-07-2009
Show Abstract
Hide Abstract
Adipose tissue is a dynamic endocrine organ with a central role in metabolism regulation. Functional differences in adipose tissue seem associated with the regional distribution of fat depots, in particular in subcutaneous and visceral omental pads. Here, we report for the first time the isolation of human adipose-derived adult stem cells from visceral omental and subcutaneous fat (V-ASCs and S-ASCs, respectively) from the same subject. Immunophenotyping shows that plastic culturing selects homogeneous cell populations of V-ASCs and S-ASCs from the corresponding stromal vascular fractions (SVFs), sharing typical markers of mesenchymal stem cells. Electron microscopy and electrophysiological and real-time RT-PCR analyses confirm the mesenchymal stem nature of both V-ASCs and S-ASCs, while no significant differences in a limited pattern of cytokine/chemokine expression can be detected. Similar to S-ASCs, V-ASCs can differentiate in vitro toward adipogenic, osteogenic, chondrogenic, muscular, and neuronal lineages, as demonstrated by histochemical, immunofluorescence, real-time RT-PCR, and electrophysiological analyses, suggesting the multipotency of such adult stem cells. Our data demonstrate that both visceral and subcutaneous adipose tissues are a source of pluripotent stem cells with multigermline potential. However, the visceral rather than the subcutaneous ASC could represent a more appropriate in vitro cell model for investigating the molecular mechanisms implicated in the pathophysiology of metabolic disorders such as obesity.
Related JoVE Video
Prominent role of relaxin in improving postinfarction heart remodeling.
Ann. N. Y. Acad. Sci.
PUBLISHED: 05-07-2009
Show Abstract
Hide Abstract
Stem cell transplantation is a promising approach for treatment of the postinfarcted heart and prevention of deleterious cardiac remodeling and heart failure. We explored this issue by transplanting mouse C2C12 myoblasts, genetically engineered to express enhanced green fluorescent protein (eGFP) or eGFP and relaxin (eGFP/RLX), into swine with chronic myocardial infarction. One month later, C2C12 myoblasts selectively settled in the ischemic scar around blood vessels, showing an activated endothelium (ICAM-1 and VCAM positive). Although unable to differentiate to a muscle phenotype, these cells induced extracellular matrix (ECM) remodeling by matrix metalloprotease secretion and increased microvessel density by vascular endothelial growth factor expression. C2C12/RLX myoblasts gave better results than C2C12/GFP. By echocardiography, C2C12-engrafted swine, especially those that received C2C12/RLX, showed better heart contractility than the untreated controls. Hence, the advantage afforded by the grafted myoblasts on cardiac function is primarily dependent on their paracrine effects on ECM remodeling and vascularization.
Related JoVE Video
Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation.
J. Cell. Sci.
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Transient receptor potential canonical (TRPC) channels provide cation and Ca(2+) entry pathways, which have important regulatory roles in many physio-pathological processes, including muscle dystrophy. However, the mechanisms of activation of these channels remain poorly understood. Using siRNA, we provide the first experimental evidence that TRPC channel 1 (TRPC1), besides acting as a store-operated channel, represents an essential component of stretch-activated channels in C2C12 skeletal myoblasts, as assayed by whole-cell patch-clamp and atomic force microscopic pulling. The channels activity and stretch-induced Ca(2+) influx were modulated by sphingosine 1-phosphate (S1P), a bioactive lipid involved in satellite cell biology and tissue regeneration. We also found that TRPC1 was functionally assembled in lipid rafts, as shown by the fact that cholesterol depletion resulted in the reduction of transmembrane ion current and conductance. Association between TRPC1 and lipid rafts was increased by formation of stress fibres, which was elicited by S1P and abolished by treatment with the actin-disrupting dihydrocytochalasin B, suggesting a role for cytoskeleton in TRPC1 membrane recruitment. Moreover, TRPC1 expression was significantly upregulated during myogenesis, especially in the presence of S1P, implicating a crucial role for TRPC1 in myoblast differentiation. Collectively, these findings may offer new tools for understanding the role of TRPC1 and sphingolipid signalling in skeletal muscle regeneration and provide new therapeutic approaches for skeletal muscle disorders.
Related JoVE Video
Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures.
J. Mol. Cell. Cardiol.
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
The possibility that resident myocardial progenitor cells may be re-activated by transplantation of exogenous stem cells into the post-infarcted heart has been suggested as a possible mechanism to explain the hearts functional improvement after stem cell therapy. Here we studied whether differentiation of mouse neonatal immature cardiomyocytes in vitro was influenced by mouse skeletal myoblasts C2C12, wild type or engineered to secrete the cardiotropic hormone relaxin. The cultured cardiomyocytes formed spontaneously beating clusters and temporally exhibited cardiac immunophenotypical (cKit, atrial natriuretic peptide, troponin T, connexin-43, HCN4) and electrical features (inward voltage-dependent Na(+), T- and L-type Ca(2+) currents, outward and inward K(+) currents, I(f) pacemaker current). These clusters were functionally connected through nanotubular structures and undifferentiated cardiac cells in the form of flattened stripes, bridging the clusters through connexin-43-containing gap junctions. These findings suggested the existence of long distance cell-to-cell communications among the cardiomyocyte aggregates involved in the intercellular transfer of Ca(2+) signals and organelles, likely required for coordination of myocardial differentiation. Co-presence of the myoblasts greatly increased cardiomyocyte differentiation and the amount of intercellular connections. In fact, these cells formed a structural support guiding elongation of nanotubules and stripe-like cells. The secretion of relaxin by the engineered myoblasts accelerated and enhanced the cardiomyogenic potential of the co-culture. These findings underscore the possibility that grafted myoblasts and cardiotropic factors, such as relaxin, may influence regeneration of resident immature cardiac cells, thus adding a tile to the mosaic of mechanisms involved in the functional benefits of cell transplantation for cardiac repair.
Related JoVE Video
Functional differences in visceral and subcutaneous fat pads originate from differences in the adipose stem cell.
PLoS ONE
Show Abstract
Hide Abstract
Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K(+)-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.
Related JoVE Video
Combined effects of melatonin and all-trans retinoic acid and somatostatin on breast cancer cell proliferation and death: molecular basis for the anticancer effect of these molecules.
Eur. J. Pharmacol.
Show Abstract
Hide Abstract
Melatonin has been shown to inhibit breast cancer cell growth in numerous studies. However, our understanding of the therapeutic effects of this hormone is still marginal and there is little information concerning its combination with other antitumor agents to achieve additional potential benefits. All-trans retinoic acids or somatostatin have been used in combination with melatonin in several pre-clinical and clinical trials, but they have never been combined altogether as an anti-breast cancer treatment. In the present study, we investigated whether the association of melatonin, all-trans retinoic acid and somatostatin leads to an enhanced anticancer activity in MCF-7 breast cancer cells. In such conditions, MCF-7 cells were investigated for cell growth/viability and proliferation, as well as for the expression of cyclin A, and components of the Notch and EGFR pathways, by Western blotting and confocal immunofluorescence. Electrophysiological, morphological, and biochemical analysis were also performed to reveal signs of cell damage and death. We found that melatonin in combination with all-trans retinoic acid and somatostatin potentiated the effects of melatonin alone on MCF-7 cell viability and growth inhibition; this phenomenon was associated with altered conductance through Ca²? and voltage-activated K? (BK) channels, and with substantial impairments of Notch-1 and epidermal growth factor (EGF)-mediated signaling. The combined treatment also caused a marked reduction in mitochondrial membrane potential and intracellular ATP production as well as induction of necrotic cell death. Taken together our results indicate that co-administration of melatonin with all-trans retinoic acid and somatostatin may be of significant therapeutic benefit in breast cancer.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.