JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The long-term maintenance of a resistance polymorphism through diffuse interactions.
Nature
PUBLISHED: 05-01-2014
Show Abstract
Hide Abstract
Plant resistance (R) genes are a crucial component in plant defence against pathogens. Although R genes often fail to provide durable resistance in an agricultural context, they frequently persist as long-lived balanced polymorphisms in nature. Standard theory explains the maintenance of such polymorphisms through a balance of the costs and benefits of resistance and virulence in a tightly coevolving host-pathogen pair. However, many plant-pathogen interactions lack such specificity. Whether, and how, balanced polymorphisms are maintained in diffusely interacting species is unknown. Here we identify a naturally interacting R gene and effector pair in Arabidopsis thaliana and its facultative plant pathogen, Pseudomonas syringae. The protein encoded by the R gene RPS5 recognizes an AvrPphB homologue (AvrPphB2) and exhibits a balanced polymorphism that has been maintained for over 2 million years (ref. 3). Consistent with the presence of an ancient balanced polymorphism, the R gene confers a benefit when plants are infected with P. syringae carrying avrPphB2 but also incurs a large cost in the absence of infection. RPS5 alleles are maintained at intermediate frequencies in populations globally, suggesting ubiquitous selection for resistance. However, the presence of P. syringae carrying avrPphB is probably insufficient to explain the RPS5 polymorphism. First, avrPphB homologues occur at very low frequencies in P. syringae populations on A. thaliana. Second, AvrPphB only rarely confers a virulence benefit to P. syringae on A. thaliana. Instead, we find evidence that selection for RPS5 involves multiple non-homologous effectors and multiple pathogen species. These results and an associated model suggest that the R gene polymorphism in A. thaliana may not be maintained through a tightly coupled interaction involving a single coevolved R gene and effector pair. More likely, the stable polymorphism is maintained through complex and diffuse community-wide interactions.
Related JoVE Video
An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis.
PLoS Genet.
PUBLISHED: 09-01-2013
Show Abstract
Hide Abstract
The failure of gene-for-gene resistance traits to provide durable and broad-spectrum resistance in an agricultural context has led to the search for genes underlying quantitative resistance in plants. Such genes have been identified in only a few cases, all for fungal or nematode resistance, and encode diverse molecular functions. However, an understanding of the molecular mechanisms of quantitative resistance variation to other enemies and the associated evolutionary forces shaping this variation remain largely unknown. We report the identification, map-based cloning and functional validation of QRX3 (RKS1, Resistance related KinaSe 1), conferring broad-spectrum resistance to Xanthomonas campestris (Xc), a devastating worldwide bacterial vascular pathogen of crucifers. RKS1 encodes an atypical kinase that mediates a quantitative resistance mechanism in plants by restricting bacterial spread from the infection site. Nested Genome-Wide Association mapping revealed a major locus corresponding to an allelic series at RKS1 at the species level. An association between variation in resistance and RKS1 transcription was found using various transgenic lines as well as in natural accessions, suggesting that regulation of RKS1 expression is a major component of quantitative resistance to Xc. The co-existence of long lived RKS1 haplotypes in A. thaliana is shared with a variety of genes involved in pathogen recognition, suggesting common selective pressures. The identification of RKS1 constitutes a starting point for deciphering the mechanisms underlying broad spectrum quantitative disease resistance that is effective against a devastating and vascular crop pathogen. Because putative RKS1 orthologous have been found in other Brassica species, RKS1 provides an exciting opportunity for plant breeders to improve resistance to black rot in crops.
Related JoVE Video
Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana.
Mol. Ecol.
PUBLISHED: 05-21-2013
Show Abstract
Hide Abstract
Despite the increasing number of genomic tools, identifying the genetics underlying adaptive complex traits remains challenging in the model species Arabidopsis thaliana. This is due, at least in part, to the lack of data on the geographical scale of adaptive phenotypic variation. The aims of this study were (i) to tease apart the historical roles of adaptive and nonselective processes in shaping phenological variation in A. thaliana in France and (ii) to gain insights into the spatial scale of adaptive variation by identifying the putative selective agents responsible for this selection. Forty-nine natural stands from four climatically contrasted French regions were characterized (i) phenologically for six traits, (ii) genetically using 135 SNP markers and (iii) ecologically for 42 variables. Up to 63% of phenological variation could be explained by neutral genetic diversity. The remaining phenological variation displayed stronger associations with ecological variation within regions than among regions, suggesting the importance of local selective agents in shaping adaptive phenological variation. Although climatic conditions have often been suggested as the main selective agents acting on phenology in A. thaliana, both edaphic conditions and interspecific competition appear to be strong selective agents in some regions. In a first attempt to identify the genetics of phenological variation at different geographical scales, we phenotyped worldwide accessions and local polymorphic populations from the French RegMap in a genome-wide association (GWA) mapping study. The genomic regions associated with phenological variation depended upon the geographical scale considered, stressing the need to account for the scale of adaptive phenotypic variation when choosing accession panels for GWAS.
Related JoVE Video
Adaptation to climate across the Arabidopsis thaliana genome.
Science
PUBLISHED: 10-08-2011
Show Abstract
Hide Abstract
Understanding the genetic bases and modes of adaptation to current climatic conditions is essential to accurately predict responses to future environmental change. We conducted a genome-wide scan to identify climate-adaptive genetic loci and pathways in the plant Arabidopsis thaliana. Amino acid-changing variants were significantly enriched among the loci strongly correlated with climate, suggesting that our scan effectively detects adaptive alleles. Moreover, from our results, we successfully predicted relative fitness among a set of geographically diverse A. thaliana accessions when grown together in a common environment. Our results provide a set of candidates for dissecting the molecular bases of climate adaptations, as well as insights about the prevalence of selective sweeps, which has implications for predicting the rate of adaptation.
Related JoVE Video
Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature.
Genetics
PUBLISHED: 05-19-2011
Show Abstract
Hide Abstract
We extensively phenotyped 6000 Arabidopsis plants with experimentally perturbed DNA methylomes as well as a diverse panel of natural accessions in a common garden. We found that alterations in DNA methylation not only caused heritable phenotypic diversity but also produced heritability patterns closely resembling those of the natural accessions. Our findings indicate that epigenetically induced and naturally occurring variation in complex traits share part of their polygenic architecture and may offer complementary adaptation routes in ecological settings.
Related JoVE Video
The role of organelle genomes in plant adaptation: time to get to work!
Plant Signal Behav
PUBLISHED: 05-01-2011
Show Abstract
Hide Abstract
That organellar genome variation can play a role in plant adaptation has been suggested by several lines of evidence, including cytoplasm capture, cytoplasm effects in local adaptation, and positive selection in a chloroplast gene. In-depth analysis and better understanding of the genetic basis of plant adaptation is becoming a main objective in plant science. Arabidopsis thaliana has all the required characteristics to be used as a model for obtaining knowledge on the mechanisms underlying the role of organelles in plant adaptation. The availability of the appropriate tools and materials for assessing organelle genetic variation will open up new opportunities for developing novel breeding strategies.
Related JoVE Video
Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana.
Nat. Rev. Genet.
PUBLISHED: 11-19-2010
Show Abstract
Hide Abstract
A major challenge in evolutionary biology and plant breeding is to identify the genetic basis of complex quantitative traits, including those that contribute to adaptive variation. Here we review the development of new methods and resources to fine-map intraspecific genetic variation that underlies natural phenotypic variation in plants. In particular, the analysis of 107 quantitative traits reported in the first genome-wide association mapping study in Arabidopsis thaliana sets the stage for an exciting time in our understanding of plant adaptation. We also argue for the need to place phenotype-genotype association studies in an ecological context if one is to predict the evolutionary trajectories of plant species.
Related JoVE Video
Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana.
Plant J.
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
In recent years Arabidopsis thaliana has become a model species for genomic variability and adaptation studies. Although impressive quantities of data have been gathered on the nuclear genomic diversity of this species, little has been published regarding its cytoplasmic diversity. We analyzed the diversity of plastid (pt) and mitochondrial (mt) genomes among 95 accessions, covering most Arabidopsis geographic origins. Four intergenic regions of the pt genome were sequenced, and a total of 68 polymorphisms and 65 pt haplotypes were identified. Several strategies were developed to identify mt polymorphisms among a subset of 14 accessions. Fifteen polymorphisms were further developed as PCR-based markers and used to analyze the whole set of 95 accessions. Using statistical parsimony, we built pt and mt phylogenetic networks of haplotype groups. To root the pt network, the pt intergenic regions of two related Arabidopsis species, Arabidopsis lyrata and Arabidopsis arenosa, were also sequenced. The mt and pt phylogenies are highly congruent and could be combined into a single cytoplasmic phylogeny. To estimate whether co-adaptation between nuclear and cytoplasmic genomes exists in A. thaliana, we tested the germination capacity in challenging conditions of 27 pairs of reciprocal F(2) families. We found that the cytoplasm donor had a significant effect on the germination capacity of some F(2) families.
Related JoVE Video
Linkage and association mapping of Arabidopsis thaliana flowering time in nature.
PLoS Genet.
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
Flowering time is a key life-history trait in the plant life cycle. Most studies to unravel the genetics of flowering time in Arabidopsis thaliana have been performed under greenhouse conditions. Here, we describe a study about the genetics of flowering time that differs from previous studies in two important ways: first, we measure flowering time in a more complex and ecologically realistic environment; and, second, we combine the advantages of genome-wide association (GWA) and traditional linkage (QTL) mapping. Our experiments involved phenotyping nearly 20,000 plants over 2 winters under field conditions, including 184 worldwide natural accessions genotyped for 216,509 SNPs and 4,366 RILs derived from 13 independent crosses chosen to maximize genetic and phenotypic diversity. Based on a photothermal time model, the flowering time variation scored in our field experiment was poorly correlated with the flowering time variation previously obtained under greenhouse conditions, reinforcing previous demonstrations of the importance of genotype by environment interactions in A. thaliana and the need to study adaptive variation under natural conditions. The use of 4,366 RILs provides great power for dissecting the genetic architecture of flowering time in A. thaliana under our specific field conditions. We describe more than 60 additive QTLs, all with relatively small to medium effects and organized in 5 major clusters. We show that QTL mapping increases our power to distinguish true from false associations in GWA mapping. QTL mapping also permits the identification of false negatives, that is, causative SNPs that are lost when applying GWA methods that control for population structure. Major genes underpinning flowering time in the greenhouse were not associated with flowering time in this study. Instead, we found a prevalence of genes involved in the regulation of the plant circadian clock. Furthermore, we identified new genomic regions lacking obvious candidate genes.
Related JoVE Video
Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines.
Nature
PUBLISHED: 03-24-2010
Show Abstract
Hide Abstract
Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases, genome-wide association (GWA) studies have, owing to advances in genotyping and sequencing technology, become an obvious general approach for studying the genetics of natural variation and traits of agricultural importance. They are particularly useful when inbred lines are available, because once these lines have been genotyped they can be phenotyped multiple times, making it possible (as well as extremely cost effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we demonstrate the power of this approach by carrying out a GWA study of 107 phenotypes in Arabidopsis thaliana, a widely distributed, predominantly self-fertilizing model plant known to harbour considerable genetic variation for many adaptively important traits. Our results are dramatically different from those of human GWA studies, in that we identify many common alleles of major effect, but they are also, in many cases, harder to interpret because confounding by complex genetics and population structure make it difficult to distinguish true associations from false. However, a-priori candidates are significantly over-represented among these associations as well, making many of them excellent candidates for follow-up experiments. Our study demonstrates the feasibility of GWA studies in A. thaliana and suggests that the approach will be appropriate for many other organisms.
Related JoVE Video
Impact of initial pathogen density on resistance and tolerance in a polymorphic disease resistance gene system in Arabidopsis thaliana.
Genetics
PUBLISHED: 02-08-2010
Show Abstract
Hide Abstract
The evolution of natural enemy defense shapes evolutionary trajectories of natural populations. Although the intensity of selection imposed by enemies clearly varies among natural populations, little is known about the reaction norm of genotypes under a gradient of selective pressure. In this study, we measure the quantitative responses of disease symptoms and plant fitness to a gradient of infection, focusing on the gene-for-gene interaction between the Rpm1 resistance gene in Arabidopsis thaliana and the AvrRpm1 avirulence gene in the bacterial pathogen Pseudomonas syringae. Two complementary sets of plant material were used: resistant (R) and susceptible (S) isogenic lines and a set of six natural accessions, three of which are Rpm1 resistant (R) and three of which are rpm1 susceptible (S). Nine initial pathogen densities were applied to each plant line. Using isogenic lines allows any differences between R and S lines to be attributed directly to the Rpm1 gene, whereas using natural accessions allows the natural variation of resistance and tolerance over a gradient of infection dosages within R and S accessions to be described. For both sets of plant material, increased infection dosage results in more extensive disease symptoms, with a subsequent decrease in seed production. The severity of disease symptoms was reduced in R relative to S subgroups, and the presence of the Rpm1 allele led to an increase in plant fitness. Tolerance, defined as the ability to sustain infection without a reduction in fitness, was directly affected by Rpm1, providing a novel demonstration of an R gene affecting tolerance. Genetic variation for tolerance was also found within the S and R natural accessions, suggesting the potential for selection to act upon this important trait.
Related JoVE Video
The scale of population structure in Arabidopsis thaliana.
PLoS Genet.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales.
Related JoVE Video
Evolutionary-thinking in agricultural weed management.
New Phytol.
PUBLISHED: 09-23-2009
Show Abstract
Hide Abstract
Agricultural weeds evolve in response to crop cultivation. Nevertheless, the central importance of evolutionary ecology for understanding weed invasion, persistence and management in agroecosystems is not widely acknowledged. This paper calls for more evolutionarily-enlightened weed management, in which management principles are informed by evolutionary biology to prevent or minimize weed adaptation and spread. As a first step, a greater knowledge of the extent, structure and significance of genetic variation within and between weed populations is required to fully assess the potential for weed adaptation. The evolution of resistance to herbicides is a classic example of weed adaptation. Even here, most research focuses on describing the physiological and molecular basis of resistance, rather than conducting studies to better understand the evolutionary dynamics of selection for resistance. We suggest approaches to increase the application of evolutionary-thinking to herbicide resistance research. Weed population dynamics models are increasingly important tools in weed management, yet these models often ignore intrapopulation and interpopulation variability, neglecting the potential for weed adaptation in response to management. Future agricultural weed management can benefit from greater integration of ecological and evolutionary principles to predict the long-term responses of weed populations to changing weed management, agricultural environments and global climate.
Related JoVE Video
Quantitative fitness effects of infection in a gene-for-gene system.
New Phytol.
PUBLISHED: 07-29-2009
Show Abstract
Hide Abstract
* It is often assumed that pathogen infection decreases plant fitness, thereby driving the evolution of plant resistance (R) genes. However, the impact of bacterial pathogens on fitness has been shown to be relatively subtle, ranging from positive to negative. * In this study, we focus on the Rps5-mediated resistance in Arabidopsis thaliana and examine the fitness effects of resistance by experimentally infecting resistant (R) and susceptible (S) plants with a natural avirulent Pseudomonas syringae strain at each of three initial infection dosage levels. Our methodology ensured control of the plant genetic backgrounds; within each of two natural accessions we created isolines varying in the presence or absence of Rps5. * In terms of lifetime fitness, R plants outperformed their S controls by 9.6-32% when infected by a pathogen carrying an associated Avr gene, depending on the initial dosage levels and genetic backgrounds. * We also found that the naturally R line, Col-0, is more tolerant than the naturally S accession, Ga-0. The negative impact of infection on fitness was 20% less in Col-0 than Ga-0. We found no effect of Rps5 itself on the tolerance of either accession. We therefore failed to find evidence for a trade-off between tolerance and resistance.
Related JoVE Video
The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes.
PLoS ONE
Show Abstract
Hide Abstract
The non conventional RTM (Restricted Tobacco etch virus Movement) resistance which restricts long distance movement of some plant viruses in Arabidopsis thaliana is still poorly understood. Though at least three RTM genes have been identified, their precise role(s) in the process as well as whether other genes are involved needs to be elucidated.
Related JoVE Video
Adaptive value of phenological traits in stressful environments: predictions based on seed production and laboratory natural selection.
PLoS ONE
Show Abstract
Hide Abstract
Phenological traits often show variation within and among natural populations of annual plants. Nevertheless, the adaptive value of post-anthesis traits is seldom tested. In this study, we estimated the adaptive values of pre- and post-anthesis traits in two stressful environments (water stress and interspecific competition), using the selfing annual species Arabidopsis thaliana. By estimating seed production and by performing laboratory natural selection (LNS), we assessed the strength and nature (directional, disruptive and stabilizing) of selection acting on phenological traits in A. thaliana under the two tested stress conditions, each with four intensities. Both the type of stress and its intensity affected the strength and nature of selection, as did genetic constraints among phenological traits. Under water stress, both experimental approaches demonstrated directional selection for a shorter life cycle, although bolting time imposes a genetic constraint on the length of the interval between bolting and anthesis. Under interspecific competition, results from the two experimental approaches showed discrepancies. Estimation of seed production predicted directional selection toward early pre-anthesis traits and long post-anthesis periods. In contrast, the LNS approach suggested neutrality for all phenological traits. This study opens questions on adaptation in complex natural environment where many selective pressures act simultaneously.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.