JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Autocrine interleukin-6 drives skin-derived mesenchymal stem cell trafficking via regulating voltage-gated Ca(2+) channels.
Stem Cells
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
Mesenchymal stem cells (MSCs) have demonstrated promising therapeutic potential for a variety of diseases including autoimmune disorders. A fundamental requirement for MSC-mediated in vivo immunosuppression is their effective trafficking. However the mechanism underlying MSC trafficking remains elusive. Here we report that skin-derived MSCs (S-MSCs) secrete high levels of interleukin-6 (IL-6) in inflammatory conditions. Disruption of the il6 or its signaling transducer gp130 blocks voltage-gated calcium (Ca(2+) ) channels (VGCC) critically required for cell contraction involved in the sequential adhesion and de-adhesion events during S-MSC migration. Deletion of il6 gene leads to a severe defect in S-MSC's trafficking and immunosuppressive function in vivo. Thus, this unexpected requirement of autocrine IL-6 for activating Ca(2+) channels uncovers a previously unrecognized link between the IL-6 signaling and the VGCC and provides novel mechanistic insights for the trafficking and immunomodulatory activities of S-MSCs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.