JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Positron emission tomographic imaging of CXCR4 in cancer: challenges and promises.
Mol Imaging
PUBLISHED: 10-25-2014
Show Abstract
Hide Abstract
AbstractMolecular imaging is an attractive platform for noninvasive detection and assessment of cancer. In recent years, the targeted imaging of the C-X-C chemokine receptor 4 (CXCR4), a chemokine receptor that has been associated with tumor metastasis, has become an area of intensive research. This review article focuses on positron emission tomography (PET) and aims to provide useful and critical insights into the application of PET to characterize CXCR4 expression, including the chemical, radiosynthetic, and biological requirements for PET radiotracers. This discussion is informed by a summary of the different approaches taken so far and a comparison of their clinical translation. Finally, our expert opinions as to potential future advances in the field are expressed.
Related JoVE Video
Preclinical evaluation of 3-18F-fluoro-2,2-dimethylpropionic acid as an imaging agent for tumor detection.
J. Nucl. Med.
PUBLISHED: 07-10-2014
Show Abstract
Hide Abstract
Deregulated cellular metabolism is a hallmark of many cancers. In addition to increased glycolytic flux, exploited for cancer imaging with (18)F-FDG, tumor cells display aberrant lipid metabolism. Pivalic acid is a short-chain, branched carboxylic acid used to increase oral bioavailability of prodrugs. After prodrug hydrolysis, pivalic acid undergoes intracellular metabolism via the fatty acid oxidation pathway. We have designed a new probe, 3-(18)F-fluoro-2,2-dimethylpropionic acid, also called (18)F-fluoro-pivalic acid ((18)F-FPIA), for the imaging of aberrant lipid metabolism and cancer detection.
Related JoVE Video
Preclinical evaluation of a CXCR4-specific (68)Ga-labelled TN14003 derivative for cancer PET imaging.
Bioorg. Med. Chem.
PUBLISHED: 09-11-2013
Show Abstract
Hide Abstract
Molecular imaging is an ideal platform for non-invasive detection and assessment of cancer. In recent years, the targeted imaging of CXCR4, a chemokine receptor that has been associated with tumour metastasis, has become an area of intensive research. In our pursuit of a CXCR4-specific radiotracer, we designed and synthesised a novel derivative of the CXCR4 peptidic antagonist TN14003, CCIC16, which is amenable to radiolabelling by chelation with a range of PET and SPECT radiometals, such as (68)Ga, (64)Cu and (111)In as well as (18)F (Al(18)F). Potent in vitro binding affinity and inhibition of signalling-dependent cell migration by unlabelled CCIC16 were confirmed by a threefold uptake in CXCR4-over-expressing cells compared to their isogenic counterparts. Furthermore, in vivo experiments demonstrated the favourable pharmacokinetic properties of the (68)Ga-labelled tracer (68)Ga-CCIC16, along with its CXCR4-specific accumulation in tissues with desirable contrast (tumour-to-muscle ratio: 9.5). The specificity of our tracer was confirmed by blocking experiments. Taking into account the attractive intrinsic PET imaging properties of (68)Ga, the comprehensive preclinical evaluation presented here suggests that (68)Ga-CCIC16 is a promising PET tracer for the specific imaging of CXCR4-expressing tumours.
Related JoVE Video
Synthesis of a new fluorine-18 glycosylated click cyanoquinoline for the imaging of epidermal growth factor receptor.
J Labelled Comp Radiopharm
PUBLISHED: 08-29-2013
Show Abstract
Hide Abstract
This study reports the radiosynthesis of a new fluorine-18 glycosylated click cyanoquinoline [(18) F]5 for positron emission tomography imaging of epidermal growth factor receptor (EGFR). The tracer was obtained in 47.7?±?7.5% (n?=?3) decay-corrected radiochemical yield from 2-[(18) F]fluoro-2-deoxy-?-d-glucopyranosyl azide, and the overall nondecay-corrected radiochemical yield from aqueous fluoride was 8.6?±?2.3% (n?=?3). An in vitro preliminary cellular uptake study showed selectivity of the tracer for EGFR-positive A431 cell lines versus EGFR-negative MCF-7 cell lines. [(18) F]5 tracer uptake in A431 cells was significantly reduced by addition of the cold isotope analogue compound 5.
Related JoVE Video
Development of a new epidermal growth factor receptor positron emission tomography imaging agent based on the 3-cyanoquinoline core: synthesis and biological evaluation.
Bioorg. Med. Chem.
PUBLISHED: 02-26-2010
Show Abstract
Hide Abstract
The epidermal growth factor receptor (EGFR/c-ErbB1/HER1) is overexpressed in many cancers including breast, ovarian, endometrial, and non-small cell lung cancer. An EGFR specific imaging agent could facilitate clinical evaluation of primary tumors and/or metastases. To achieve this goal we designed and synthesized a small array of fluorine containing compounds based on a 3-cyanoquinoline core. A lead compound, 16, incorporating 2-fluoroethyl-1,2,3-triazole was selected for evaluation as a radioligand based on its high affinity for EGFR kinase (IC50=1.81+/-0.18 nM), good cellular potency (IC50=21.97+/-9.06 nM), low lipophilicity and good metabolic stability. Click labeling afforded [18F]16 in 37.0+/-3.6% decay corrected radiochemical yield based on azide [18F]14 and 7% end of synthesis (EOS) yield from aqueous fluoride. Compound [18F]16 was obtained with >99% radiochemical purity in a total synthesis time of 3 h. The compound showed good stability in vivo and a fourfold higher uptake in high EGFR expressing A431 tumor xenografts compared to low EGFR expressing HCT116 tumor xenografts. Furthermore, the radiotracer could be visualized in A431 tumor bearing mice by small animal PET imaging. Compound [18F]16 therefore constitutes a promising radiotracer for further evaluation for imaging of EGFR status.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.