JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Mild Lafora disease: Clinical, neurophysiologic, and genetic findings.
Epilepsia
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
We report clinical, neurophysiologic, and genetic features of an Italian series of patients with Lafora disease (LD) to identify distinguishing features of those with a slowly progressive course. Twenty-three patients with LD (17 female; 6 male) were recruited. Mean age (± SD) at the disease onset was 14.5 ± 3.9 years and mean follow-up duration was 13.2 ± 8.0 years. NHLRC1 mutations were detected in 18 patients; EPM2A mutations were identified in 5. Patients who maintained >10 years gait autonomy were labeled as "mild" and were compared with the remaining LD patients with a typical course. Six of 23 patients were mild and presented significantly delay in the age at onset, lower neurologic disability score at 4 years after the onset, less severe seizure phenotype, lower probability of showing both photoparoxysmal response on electroencephalography (EEG) and giant somatosensory evoked potentials, as compared to patients with typical LD. However, in both mild and typical LD patients, EEG showed disorganization of background activity and frequent epileptiform abnormalities. Mild LD patients had NHLRC1 mutations and five of six carried homozygous or compound heterozygous D146N mutation. This mutation was found in none of the patients with typical LD. The occurrence of specific NHLRC1 mutations in patients with mild LD should be taken into account in clinical practice for appropriate management and counseling.
Related JoVE Video
Genetic and forensic implications in epilepsy and cardiac arrhythmias: a case series.
Int. J. Legal Med.
PUBLISHED: 08-15-2014
Show Abstract
Hide Abstract
Epilepsy affects approximately 3 % of the world's population, and sudden death is a significant cause of death in this population. Sudden unexpected death in epilepsy (SUDEP) accounts for up to 17 % of all these cases, which increases the rate of sudden death by 24-fold as compared to the general population. The underlying mechanisms are still not elucidated, but recent studies suggest the possibility that a common genetic channelopathy might contribute to both epilepsy and cardiac disease to increase the incidence of death via a lethal cardiac arrhythmia. We performed genetic testing in a large cohort of individuals with epilepsy and cardiac conduction disorders in order to identify genetic mutations that could play a role in the mechanism of sudden death. Putative pathogenic disease-causing mutations in genes encoding cardiac ion channel were detected in 24 % of unrelated individuals with epilepsy. Segregation analysis through genetic screening of the available family members and functional studies are crucial tasks to understand and to prove the possible pathogenicity of the variant, but in our cohort, only two families were available. Despite further research should be performed to clarify the mechanism of coexistence of both clinical conditions, genetic analysis, applied also in post-mortem setting, could be very useful to identify genetic factors that predispose epileptic patients to sudden death, helping to prevent sudden death in patients with epilepsy.
Related JoVE Video
Expanding sialidosis spectrum by genome-wide screening: NEU1 mutations in adult-onset myoclonus.
Neurology
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
To identify the genetic cause of a familial form of late-onset action myoclonus in 2 unrelated patients. Both probands had 2 siblings displaying a similar disorder. Extensive laboratory examinations, including biochemical assessment for urine sialic acid in the 2 probands, were negative.
Related JoVE Video
Related JoVE Video
De novo mutations in HCN1 cause early infantile epileptic encephalopathy.
Nat. Genet.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.
Related JoVE Video
TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Alterations in the formation of brain networks are associated with several neurodevelopmental disorders. Mutations in TBC1 domain family member 24 (TBC1D24) are responsible for syndromes that combine cortical malformations, intellectual disability, and epilepsy, but the function of TBC1D24 in the brain remains unknown. We report here that in utero TBC1D24 knockdown in the rat developing neocortex affects the multipolar-bipolar transition of neurons leading to delayed radial migration. Furthermore, we find that TBC1D24-knockdown neurons display an abnormal maturation and retain immature morphofunctional properties. TBC1D24 interacts with ADP ribosylation factor (ARF)6, a small GTPase crucial for membrane trafficking. We show that in vivo, overexpression of the dominant-negative form of ARF6 rescues the neuronal migration and dendritic outgrowth defects induced by TBC1D24 knockdown, suggesting that TBC1D24 prevents ARF6 activation. Overall, our findings demonstrate an essential role of TBC1D24 in neuronal migration and maturation and highlight the physiological relevance of the ARF6-dependent membrane-trafficking pathway in brain development.
Related JoVE Video
Progressive myoclonic epilepsies: definitive and still undetermined causes.
Neurology
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
To define the clinical spectrum and etiology of progressive myoclonic epilepsies (PMEs) in Italy using a database developed by the Genetics Commission of the Italian League against Epilepsy.
Related JoVE Video
Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A.
Brain
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.
Related JoVE Video
Related JoVE Video
Neurological features and long-term follow-up in 15q11.2-13.1 duplication.
Eur J Med Genet
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
Various rearrangements occurring in the 15q11-q13 region have been reported in association with epilepsy. Deletions are the most frequent and are associated with Angelman or Prader-Willi syndrome. Duplications feature complex phenotypes including developmental delay, autistic-like behaviour and seizures. Among these, trisomy has been described as a milder phenotype compared to tetrasomy, but reports are rare and the phenotype is not yet defined. Here we report two adult cases with a 15q11.2-13.1 duplication showing a complex and similar epileptic phenotype.
Related JoVE Video
Loss-of-function KCNH2 mutation in a family with long QT syndrome, epilepsy, and sudden death.
Epilepsia
PUBLISHED: 05-24-2013
Show Abstract
Hide Abstract
There has been increased interest in a possible association between epilepsy channelopathies and cardiac arrhythmias, such as long QT syndrome (LQTS). We report a kindred that features LQTS, idiopathic epilepsy, and increased risk of sudden death. Genetic study showed a previously unreported heterozygous point mutation (c.246T>C) in the KCNH2 gene. Functional studies showed that the mutation induces severe loss of function. This observation provides further evidence for a possible link between idiopathic epilepsy and LQTS.
Related JoVE Video
De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome.
Am. J. Hum. Genet.
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures.
Related JoVE Video
Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy.
Hum. Mutat.
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
Early-onset epileptic encephalopathies (EOEEs) are a group of rare devastating epileptic syndromes of infancy characterized by severe drug-resistant seizures and electroencephalographic abnormalities. The current study aims to determine the genetic etiology of a familial form of EOEE fulfilling the diagnosis criteria for malignant migrating partial seizures of infancy (MMPSI). We identified two inherited novel mutations in TBC1D24 in two affected siblings. Mutations severely impaired TBC1D24 expression and function, which is critical for maturation of neuronal circuits. The screening of TBC1D24 in an additional set of eight MMPSI patients was negative. TBC1D24 loss of function has been associated to idiopathic infantile myoclonic epilepsy, as well as to drug-resistant early-onset epilepsy with intellectual disability. Here, we describe a familial form of MMPSI due to mutation in TBC1D24, revealing a devastating epileptic phenotype associated with TBC1D24 dysfunction.
Related JoVE Video
Related JoVE Video
Coexistence of epilepsy and Brugada syndrome in a family with SCN5A mutation.
Epilepsy Res.
PUBLISHED: 01-27-2013
Show Abstract
Hide Abstract
Cardiac arrhythmias are associated with abnormal channel function due to mutations in ion channel genes. Epilepsy is a disorder of neuronal function also involving abnormal channel function. It is increasingly demonstrated that the etiologies of long QT syndrome and epilepsy may partly overlap. However, only a few genetic studies have addressed a possible link between cardiac and neural channelopathies. We describe a family showing the association between Brugada syndrome and epilepsy in which a known mutation in the SCN5A gene (p.W1095X, c.3284G>A) was identified. We suggest that this mutation can be responsible for cardiac and brain involvement, probably at different developmental age in the same individual. This observation confirms the possibility that SCN5A mutations may confer susceptibility for recurrent seizure activity, supporting the emerging concept of a genetically determined cardiocerebral channelopathy.
Related JoVE Video
Different electroclinical picture of generalized epilepsy in two families with 15q13.3 microdeletion.
Epilepsia
PUBLISHED: 01-20-2013
Show Abstract
Hide Abstract
15q.13.3 microdeletion has been described in a variety of neurodevelopmental disorders. Epilepsy appears to be a common feature and, specifically, the 15q13.3 microdeletion is found in about 1% of patients with idiopathic generalized epilepsy. Recently, absence seizures with intellectual disability (ID) have been reported in patients carrying this mutation. We describe two families in which several affected members carry a 15q13.3 microdeletion in a pattern suggestive of autosomal dominant inheritance. Their phenotype includes mainly absence epilepsy and mild ID, suggesting only similarities with genetic/idiopathic generalized epilepsies but not typical features. The importance of studying such families is crucial to broaden the phenotype and understand the long-term outcome of patients with this condition.
Related JoVE Video
EXOSC3 mutations in isolated cerebellar hypoplasia and spinal anterior horn involvement.
J. Neurol.
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
Pontocerebellar hypoplasia (PCH) type 1 is characterized by the co-occurrence of spinal anterior horn involvement and hypoplasia of the cerebellum and pons. EXOSC3 has been recently defined as a major cause of PCH type 1. Three different phenotypes showing variable severity have been reported. We identified a homozygous mutation [c.395A > C/p.D132A] in EXOSC3 in four patients with muscle hypotonia, developmental delay, spinal anterior horn involvement, and prolonged survival, consistent with the "mild PCH1 phenotype". Interestingly, isolated cerebellar hypoplasia limited to the hemispheres or involving both hemispheres and vermis was the main neuroradiologic finding, whereas the pontine volume was in the normal range for age. These findings strongly suggest that analysis of the EXOSC3 gene should be recommended also in patients with spinal anterior horn involvement and isolated cerebellar hypoplasia.
Related JoVE Video
PRRT2-related disorders: further PKD and ICCA cases and review of the literature.
J. Neurol.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Recent studies reported mutations in the gene encoding the proline-rich transmembrane protein 2 (PRRT2) to be causative for paroxysmal kinesigenic dyskinesia (PKD), PKD combined with infantile seizures (ICCA), and benign familial infantile seizures (BFIS). PRRT2 is a presynaptic protein which seems to play an important role in exocytosis and neurotransmitter release. PKD is the most common form of paroxysmal movement disorder characterized by recurrent brief involuntary hyperkinesias triggered by sudden movements. Here, we sequenced PRRT2 in 14 sporadic and 8 familial PKD and ICCA cases of Caucasian origin and identified three novel mutations (c.919C>T/p.Gln307, c.388delG/p.Ala130Profs 46, c.884G>A/p.Arg295Gln) predicting two truncated proteins and one probably damaging point mutation. A review of all published cases is also included. PRRT2 mutations occur more frequently in familial forms of PRRT2-related syndromes (80-100 %) than in sporadic cases (33-46 %) suggesting further heterogeneity in the latter. PRRT2 mutations were rarely described in other forms of paroxysmal dyskinesias deviating from classical PKD, as we report here in one ICCA family without kinesigenic triggers. Mutations are exclusively found in two exons of the PRRT2 gene at a high rate across all syndromes and with one major mutation (c.649dupC) in a mutational hotspot of nine cytosines, which is responsible for 57 % of all cases in all phenotypes. We therefore propose that genetic analysis rapidly performed in early stages of the disease is highly cost-effective and can help to avoid further unnecessary diagnostic and therapeutic interventions.
Related JoVE Video
Hypomyelination and congenital cataract: broadening the clinical phenotype.
Arch. Neurol.
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
To further delineate the clinical spectrum of hypomyelination and congenital cataract (HCC), a rare autosomal recessive white matter disorder due to deficiency of a membrane protein, hyccin, encoded by FAM126A.
Related JoVE Video
Fever as a seizure precipitant factor in Panayiotopoulos syndrome: a clinical and genetic study.
Seizure
PUBLISHED: 08-05-2011
Show Abstract
Hide Abstract
To examine fever as a precipitating factor for focal seizures in patients with Panayiotopoulos syndrome (PS) and evaluate the role of SCN1A in PS patients with seizures triggered by fever.
Related JoVE Video
Benign myoclonic epilepsy in infancy followed by childhood absence epilepsy.
Seizure
PUBLISHED: 06-14-2011
Show Abstract
Hide Abstract
Benign myoclonic epilepsy in infancy (BMEI) is a rare syndrome included among idiopathic generalized epilepsies (IGE) and syndromes with age-related onset. Recently, it has been shown that a few patients with BMEI later had other epilepsy types mainly IGE but never childhood absence epilepsy (CAE). We report a patient who at 11 months of age showed isolated myoclonic jerks occurring several times a day. The ictal video-EEG and polygraphic recording revealed generalized discharge of spike-wave (SW) lasting 1-2s associated with isolated bilateral synchronous jerk involving mainly the upper limbs controlled by valproic acid (VPA). At 6 years and 8 months the child developed a new electroclinical feature recognized as CAE. The ictal EEG disclosed a burst of rhythmic 3 Hz generalized SW. Our case is the first patient with BMEI reported in the literature who later developed a CAE. This finding suggests a common neurobiological and genetic link between different age-related epileptic phenotypes.
Related JoVE Video
A functional polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness in Italian patients with focal epilepsy.
Epilepsia
PUBLISHED: 05-13-2011
Show Abstract
Hide Abstract
A splice site variation (c.603-91G>A or rs3812718) in the SCN1A gene has been claimed to influence efficacy and dose requirements of carbamazepine and phenytoin. We investigated the relationship between c.603-91G>A polymorphism and response to antiepileptic drugs (AEDs) in 482 patients with drug-resistant and 401 patients with drug-responsive focal epilepsy. Most commonly used AEDs were carbamazepine and oxcarbazepine. The distribution of c.603-91G>A genotypes was similar among drug-resistant and drug-responsive subjects, both in the entire population and in the groups treated with carbamazepine or oxcarbazepine. There was no association between the c.603-91G>A genotype and dosages of carbamazepine or oxcarbazepine. These findings rule out a major role of the SCN1A polymorphism as a determinant of AED response.
Related JoVE Video
The genetics of Dravet syndrome.
Epilepsia
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Dravet syndrome (DS), otherwise known as severe myoclonic epilepsy of infancy (SMEI), is an epileptic encephalopathy presenting in the first year of life. DS has a genetic etiology: between 70% and 80% of patients carry sodium channel ?1 subunit gene (SCN1A) abnormalities, and truncating mutations account for about 40% and have a significant correlation with an earlier age of seizures onset. The remaining SCN1A mutations comprise splice-site and missense mutations, most of which fall into the pore-forming region of the sodium channel. Mutations are randomly distributed across the SCN1A protein. Most mutations are de novo, but familial SCN1A mutations also occur. Somatic mosaic mutations have also been reported in some patients and might explain the phenotypical variability seen in some familial cases. SCN1A exons deletions or chromosomal rearrangements involving SCN1A and contiguous genes are also detectable in about 2-3% of patients. A small percentage of female patients with a DS-like phenotype might carry PCDH19 mutations. Rare mutations have been identified in the GABARG2 and SCN1B genes. The etiology of about 20% of DS patients remains unknown, and additional genes are likely to be implicated.
Related JoVE Video
Long-term follow-up in two siblings with pyridoxine-dependent seizures associated with a novel ALDH7A1 mutation.
Eur. J. Paediatr. Neurol.
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
Pyridoxine-dependent seizures (PDS) is a rare disorder characterized by seizures resistant to anticonvulsants but controlled by daily pharmacologic doses of pyridoxine. Mutations in the antiquitin (ALDH7A1) gene have recently reported to cause PDS in most of patients. We report the long-term follow-up in two PDS siblings carrying a novel ALDH7A1 mutation.
Related JoVE Video
Natural history and long-term evolution in families with autosomal dominant cortical tremor, myoclonus, and epilepsy.
Epilepsia
PUBLISHED: 03-22-2011
Show Abstract
Hide Abstract
To investigate for the first time the natural history and long-term evolution of "familial cortical tremor, myoclonus, and epilepsy."
Related JoVE Video
Temporal lobe epilepsy and anti glutamic acid decarboxylase autoimmunity.
Neurol. Sci.
PUBLISHED: 03-19-2011
Show Abstract
Hide Abstract
Epilepsy is one of the most impactful diseases on social life. A significant number of epileptic syndromes have been linked to immunological alterations. Elevated levels of antibodies against glutamic acid decarboxylase have been recently found in a significant percentage of patients with temporal lobe epilepsy, the most common epilepsy type. The clinical and pathogenetic relationship of this association is discussed. This link may have important therapeutic implications and merits additional clinical and laboratory research.
Related JoVE Video
The genetics of monogenic idiopathic epilepsies and epileptic encephalopathies.
Seizure
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
The group of idiopathic epilepsies encompasses numerous syndromes without known organic substrate. Genetic anomalies are thought to be responsible for pathogenesis, with a monogenic or polygenic model of inheritance. Over the last two decades, a number of genetic anomalies and encoded proteins have been related to particular idiopathic epilepsies and epileptic encephalopathies. Most of these mutations involve subunits of neuronal ion channels (e.g. potassium, sodium, and chloride channels), and may result in abnormal neuronal hyperexcitability manifesting with seizures. However non-ion channel proteins may also be affected. Correlations between genotype and phenotype are not easy to establish, since genetic and non-genetic factors are likely to play a role in determining the severity of clinical features. The growing number of discoveries on this topic are improving classification, prognosis and counseling of patients and families with these forms of epilepsy, and may lead to targeted therapeutic approaches in the near future. In this article the authors have reviewed the main genetic discoveries in the field of the monogenic idiopathic epilepsies and epileptic encephalopathies, in order to provide epileptologists with a concise and comprehensive summary of clinical and genetic features of these seizure disorders.
Related JoVE Video
A novel de novo SCN1A missense mutation in Severe Myoclonic Epilepsy Borderland.
Acta Neurol Belg
PUBLISHED: 12-01-2010
Show Abstract
Hide Abstract
In this report we describe a novel missense SCN1A mutation in a patient affected by Severe Myoclonic Epilepsy Borderland (SMEB). This three and a half year-old female patient experienced prolonged febrile seizures at the age of 14 months, followed by generalized tonic-clonic seizures, atonic seizures, atypical absences almost in a cluster and triggered by fever. Cognitive and motor development was normal. The case was suggestive for SMEB. SCN1A analysis revealed an unknown de novo point mutation: a heterozygous replacement of nucleotide G with nucleotide T in position 4183 of the coding region of the gene (c.4183 G>T) in exon 21. This mutation causes the replacement of aspartic acid with tyrosine in 1395 (p.D1396Y). Even if other SCN1A missense mutations localized in the same region are associated to SMEB, a definite genotype-phenotype correlation has not yet been found, probably because other factors are involved in the pathogenesis of this type of epilepsy.
Related JoVE Video
Pyridoxine-dependent epilepsy: an under-recognised cause of intractable seizures.
J Paediatr Child Health
PUBLISHED: 10-06-2010
Show Abstract
Hide Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disorder causing intractable seizures in neonates and infants. PDE patients are typically resistant to anti-epileptic treatment but respond to the administration of pyridoxine. Different seizure types have been reported in PDE, and episodes of status epilepticus are common. Electroencephalographic or neuroimaging abnormalities are not pathognomonic for this disorder. Intellectual disability is frequent at the follow-up. Recently, elevated urinary ?-aminoadipic semialdehyde has been shown to be a reliable biomarker of this disorder, and mutations in the ALDH7A1 gene, encoding ?-aminoadipic semialdehyde dehydrogenase, have been demonstrated in the large majority of PDE patients. However, early consideration of a pyridoxine trial remains the most important issue in a neonate or in an infant with intractable early onset seizures.
Related JoVE Video
Genotype-phenotype correlations in a group of 15 SCN1A-mutated Italian patients with GEFS+ spectrum (seizures plus, classical and borderline severe myoclonic epilepsy of infancy).
J. Child Neurol.
PUBLISHED: 08-20-2010
Show Abstract
Hide Abstract
Mutations in SCN1A gene have been associated with the spectrum of generalized/genetic epilepsy with febrile seizures plus. Recently, databases reporting SCN1A mutations and clinical details of patients have been created to facilitate genotype- phenotype correlations, actually not completely defined, particularly if a specific mutation underlies phenotypes. We report on a group of 15 patients with clinical features of GEFS+ (3), classical (7), or borderline severe myoclonic epilepsy of infancy (5), in whom genetic analysis of patients and parents and follow-up period were performed to establish genotype-phenotype correlations, to enrich literature and databases data. We found 11 pathogenic mutations (5 novel: c.80 G>C exon 1; c.187 T>C exon 1; c.3061 G>T exon 16; c.4297 G>A exon 22; c.5579 delA ins TCTCC exon 26) and 4 novel nucleotidic variants (IVS5+38 C>T intron 5; IVS8-19 C>T intron 18; c.4945 C>T exon 25; c.5127 C>A exon 26). Paternal inheritance was observed in 4/4 cases.
Related JoVE Video
TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy.
Am. J. Hum. Genet.
PUBLISHED: 06-14-2010
Show Abstract
Hide Abstract
Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders.
Related JoVE Video
A pilot open-label trial of zonisamide in Unverricht-Lundborg disease.
Mov. Disord.
PUBLISHED: 05-05-2010
Show Abstract
Hide Abstract
Action myoclonus frequently remains the primary cause of disability in Unverricht-Lundborg disease (EPM1) patients. Pharmacological treatment of myoclonus in these patients continues to be challenging; indeed conventional AEDs may be poorly effective in monotherapy or even in combination. We carried out a pilot, open-label trial of add-on zonisamide (ZNS) in patients with EPM1. Twelve EPM1 patients with epilepsy and action myoclonus were included in the study. Oral ZNS was gradually titrated until the target dose of 6 mg/Kg/day. Unified Myoclonus Rating Scale was obtained in each subject before and after ZNS add-on. A significant reduction of myoclonus severity was reached after ZNS introduction. ZNS was generally well tolerated and only two patients withdrew due to mild adverse effects. Our trial suggests that ZNS may be a valuable therapeutic option in EPM1 patients.
Related JoVE Video
Therapeutic potential of proteasome inhibition in Duchenne and Becker muscular dystrophies.
Am. J. Pathol.
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
Duchenne muscular dystrophy (DMD) and its milder allelic variant, Becker muscular dystrophy (BMD), result from mutations of the dystrophin gene and lead to progressive muscle deterioration. Enhanced activation of proteasomal degradation underlies critical steps in the pathogenesis of the DMD/BMD dystrophic process. Previously, we demonstrated that treatment with the proteasome inhibitor MG-132 rescues the cell membrane localization of dystrophin and the dystrophin glycoprotein complex in mdx mice, a natural genetic mouse model of DMD. The current work aims to thoroughly define the therapeutic potential in dystrophinopathies of Velcade, a drug that selectively blocks the ubiquitin-proteasome pathway. Velcade is particularly intriguing since it has been approved for the treatment of multiple myeloma. Therefore, its side effects in humans have been explored. Velcade effects were analyzed through two independent methodological approaches. First, we administered the drug systemically in mdx mice over a 2-week period. In this system, Velcade restores the membrane expression of dystrophin and dystrophin glycoprotein complex members and improves the dystrophic phenotype. In a second approach, we treated with the compound explants from muscle biopsies of DMD or BMD patients. We show that the inhibition of the proteasome pathway up-regulates dystrophin, alpha-sarcoglycan, and beta-dystroglycan protein levels in explants from BMD patients, whereas it increases the proteins of the dystrophin glycoprotein complex in DMD cases.
Related JoVE Video
A very fast and accurate method for calling aberrations in array-CGH data.
Biostatistics
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Array comparative genomic hybridization (aCGH) is a microarray technology that allows one to detect and map genomic alterations. The standard workflow of the aCGH data analysis consists of 2 steps: detecting the boundaries of the regions of changed copy number by means of a segmentation algorithm (break point identification) and then labeling each region as loss, neutral, or gain with a probabilistic framework (calling procedure). In this paper, we introduce a novel calling procedure based on a mixture of truncated normal distributions, named FastCall, that aims to give aberration probabilities to segmented aCGH data in a very fast and accurate way. Both on synthetic and real aCGH data, FastCall obtains excellent performances in terms of classification accuracy and running time.
Related JoVE Video
Genetic testing in the epilepsies--report of the ILAE Genetics Commission.
Epilepsia
PUBLISHED: 01-19-2010
Show Abstract
Hide Abstract
In this report, the International League Against Epilepsy (ILAE) Genetics Commission discusses essential issues to be considered with regard to clinical genetic testing in the epilepsies. Genetic research on the epilepsies has led to the identification of more than 20 genes with a major effect on susceptibility to idiopathic epilepsies. The most important potential clinical application of these discoveries is genetic testing: the use of genetic information, either to clarify the diagnosis in people already known or suspected to have epilepsy (diagnostic testing), or to predict onset of epilepsy in people at risk because of a family history (predictive testing). Although genetic testing has many potential benefits, it also has potential harms, and assessment of these potential benefits and harms in particular situations is complex. Moreover, many treating clinicians are unfamiliar with the types of tests available, how to access them, how to decide whether they should be offered, and what measures should be used to maximize benefit and minimize harm to their patients. Because the field is moving rapidly, with new information emerging practically every day, we present a framework for considering the clinical utility of genetic testing that can be applied to many different syndromes and clinical contexts. Given the current state of knowledge, genetic testing has high clinical utility in few clinical contexts, but in some of these it carries implications for daily clinical practice.
Related JoVE Video
Galloway-Mowat syndrome: an early-onset progressive encephalopathy with intractable epilepsy associated to renal impairment. Two novel cases and review of literature.
Seizure
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
Galloway-Mowat Syndrome (GMS) is an autosomal recessively inherited condition which manifests with severe encephalopathy, featuring microcephaly, developmental delay, and early-onset intractable epilepsy. Patients typically show also renal involvement from the onset. We report two siblings with GMS presenting with early-onset, intractable epilepsy and neurological deterioration, later followed by renal impairment. In both patients intractable epilepsy started during the first months of life and included a combination of spasms, focal and myoclonic/atonic seizures, along with psychomotor retardation and dysmorphic features. One of the patient died from fulminating renal failure at age 6 years. The other patient developed only isolated proteinuria from the age 3 years. Our cases differ from classic GMS, as manifested the clinical and laboratory features of renal involvement only some years later the onset of epilepsy and neurological symptoms. Therefore, the diagnosis of GMS should be considered in infants with intractable epilepsy, encephalopathy, and multiple neurological deficits, also in absence of renal manifestations. The literature data about the electroclinical features of epilepsy in GMS are also reviewed.
Related JoVE Video
Short and long interval cortical inhibition in patients with Unverricht-Lundborg and Lafora body disease.
Epilepsy Res.
PUBLISHED: 01-05-2010
Show Abstract
Hide Abstract
Myoclonus has different clinical and neurophysiological features in patients with Unverricht-Lundborg (ULD) and Lafora body disease (LBD), probably because of a different cortical hyperexcitability profile. To investigate the role of intracortical inhibition in such different presentations, we used paired-pulse transcranial magnetic stimulation (TMS) in ten ULD and five LBD patients, all with a positive molecular diagnosis. All of the patients were treated with antiepileptic drugs (AEDs). In comparison with healthy subjects, both patient groups had significantly defective short intracortical inhibition (SICI), however LBD patients, but not ULD and healthy subjects, had a clear inhibition at ISI 6 ms and ISI 10 ms. Moreover, defective long interval cortical inhibition (LICI) was found in LBD but not ULD patients. The substantial reduction in SICI suggests that both ULD and LBD patients have impaired inhibitory interneuron pools which are involved in the generation of cortical reflex myoclonus, whereas the inhibition found in LBD patients at ISI 6 and 10 ms, as well the reduced inhibition found at long intervals, suggest a more complex circuitry dysfunction possibly involving both excitatory and inhibitory systems. These findings are probably related to the high epileptogenic propensity characterizing LBD with respect to ULD and to the more severely distorted neuronal network resulting from the pathogenesis of LBD.
Related JoVE Video
22-year-old girl with status epilepticus and progressive neurological symptoms.
Brain Pathol.
PUBLISHED: 09-12-2009
Show Abstract
Hide Abstract
A 22-year-old girl presented with convulsive status epilepticus and a previous history of recurrent seizures, myoclonus, ataxia and impaired cognitive functions. Neurological examination revealed rest and action-induced myoclonus, pyramidal signs and opposition hypertonia. Testing revealed severe metabolic acidosis, elevated transaminases and creatine kinase, and respiratory insufficiency. After intubation and ventilation, thiopental was introduced but the patients condition worsened dramatically with death in a few hours. Autopsy showed profuse periodic acid-Schiff (PAS) positive intracellular inclusions in the CNS (Lafora bodies), most abundant in thalamus, cerebellum, and brainstem, as well as in other organs. Genetic testing revealed a homozygous missense mutation (c.205C > G, P69A) in the EPM2B (NHLRC1) gene, confirming the diagnosis of progressive myoclonic epilepsy Lafora-type.
Related JoVE Video
(1)H-MR spectroscopy indicates prominent cerebellar dysfunction in benign adult familial myoclonic epilepsy.
Epilepsia
PUBLISHED: 08-15-2009
Show Abstract
Hide Abstract
To investigate the neurochemical pattern in patients with benign adult familial myoclonic epilepsy (BAFME/FAME), an inherited form of myoclonic epilepsy, by proton magnetic resonance (MR) spectroscopy ((1)H-MRS).
Related JoVE Video
Familial benign nonprogressive myoclonic epilepsies.
Epilepsia
PUBLISHED: 05-28-2009
Show Abstract
Hide Abstract
Work on the classification of epileptic syndromes is ongoing, and many syndromes are still under discussion. In particular, special difficulty still persists in correctly classifying epilepsies with myoclonic seizures. The existence of special familial epileptic syndromes primarily showing myoclonic features has been recently suggested on the basis of a clear pattern of inheritance or on the identification of new chromosomal genetic loci linked to the disease. These forms in development include familial infantile myoclonic epilepsy (FIME), benign adult familial myoclonic epilepsy (BAFME), or autosomal dominant cortical myoclonus and epilepsy (ADCME), and, maybe, adult-onset myoclonic epilepsy (AME). In the future, the identification of responsible genes and the protein products will contribute to our understanding of the molecular pathways of epileptogenesis and provide neurobiologic criteria for the classification of epilepsies, beyond the different phenotypic expression.
Related JoVE Video
The impact of genetics on the classification of epilepsy syndromes.
Epilepsia
PUBLISHED: 05-28-2009
Show Abstract
Hide Abstract
Recent progress in the genetics of epilepsies may potentially provide important insights into biologic processes underlying epileptogenesis. However, the genetic etiology underlying epilepsy remains largely unknown, and the impact of available genetic data on the nosology of epilepsy is still limited. Therefore, at present, classification of epileptic disorders should be mainly based on electroclinical features. In the future, it is likely that the investigation of familial traits will lead to the definition of novel syndromes and that genotype-phenotype correlations in inherited conditions will shed light on the variable expressivity of epileptic disorders. Moreover, the discovery of new epilepsy genes may allow assessment of whether different phenotypes are etiologically linked.
Related JoVE Video
Autoantibodies to glutamic acid decarboxylase (GAD) in focal and generalized epilepsy: A study on 233 patients.
J. Neuroimmunol.
PUBLISHED: 04-15-2009
Show Abstract
Hide Abstract
Autoantibodies to glutamic acid decarboxylase (GADA) have been associated to a wide range of neurologic conditions, including epilepsy. However, the spectrum of epileptic conditions associated with GADA is not completely established. We aimed to determine the occurrence of GADA in a large series of patients with different epilepsy types. Moreover, we assessed whether specific subgroups of patients are associated to GAD autoimmunity.
Related JoVE Video
SCN1A duplications and deletions detected in Dravet syndrome: implications for molecular diagnosis.
Epilepsia
PUBLISHED: 03-12-2009
Show Abstract
Hide Abstract
We aimed to determine the type, frequency, and size of microchromosomal copy number variations (CNVs) affecting the neuronal sodium channel ? 1 subunit gene (SCN1A) in Dravet syndrome (DS), other epileptic encephalopathies, and generalized epilepsy with febrile seizures plus (GEFS+).
Related JoVE Video
Dravet syndrome: early clinical manifestations and cognitive outcome in 37 Italian patients.
Brain Dev.
PUBLISHED: 02-20-2009
Show Abstract
Hide Abstract
Aims of our study were to describe the early clinical features of Dravet syndrome (SMEI) and the neurological, cognitive and behavioral outcome. The clinical history of 37 patients with clinical diagnosis of SMEI, associated with a point mutation of SCN1A gene in 84% of cases, were reviewed with particular attention to the symptoms of onset. All the patients received at least one formal cognitive and behavior evaluation. Epilepsy started at a mean age of 5.7 months; the onset was marked by isolated seizure in 25 infants, and by status epilepticus in 12; the first seizure had been triggered by fever, mostly of low degree in 22 infants; the first EEG was normal in all cases. During the second year of life difficult-to-treat seizures recurred, mostly triggered by fever, hot bath, and intermittent lights and delay in psychomotor development became evident. At the last evaluation, performed at a mean age of 16+/-6.9 years, mental retardation was present in 33 patients, associated with behavior disorders in 21. Our data indicate that the most striking features of SMEI are: the early onset of seizures in a previously healthy child, the long duration of the first seizure, the presence of focal ictal symptoms, and sensitivity to low-grade fever. Diagnosis of SMEI may be proposed by the end of the first year of life, and a definite diagnosis can be established during the second year based on the peculiar seizure-favoring factors, EEG photosensitivity and psychomotor slowing. The temporal correlation between high seizure frequency and cognitive impairment support the role of epilepsy in the clinical outcome, even if a role of channelopathy cannot be ruled out.
Related JoVE Video
Dramatic response to levetiracetam in post-ischaemic Holmes tremor.
BMJ Case Rep
PUBLISHED: 01-23-2009
Show Abstract
Hide Abstract
Holmes tremor refers to an unusual combination of rest, postural and kinetic tremor of extremities. Common causes of Holmes tremor include stroke, trauma, vascular malformations and multiple sclerosis, with lesions involving the thalamus, brain stem or cerebellum. Although some drugs (eg, levodopa and dopaminergic drugs, clonazepam and propranolol) have been occasionally reported to give some benefit, medical treatment of Holmes tremor is unsatisfactory, and many patients require thalamic surgery to achieve satisfactory control. We report a patient in whom post-ischaemic Holmes tremor dramatically responded to levetiracetam treatment.
Related JoVE Video
Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy.
Epilepsy Res.
PUBLISHED: 01-19-2009
Show Abstract
Hide Abstract
We report on the use of the voltage-gated calcium channel blocker (Vg-CCB), verapamil, as an add-on anticonvulsant medication in two girls, 4 and 14 years of age, who were affected by severe myoclonic epilepsy in infancy (SMEI) or Dravet syndrome, a channelopathy caused by abnormalities in the voltage-gated sodium channel neuronal type alpha1 subunit (SCN1A) gene at 2q24. Both girls had pharmacoresistant epilepsy and developmental delay. Mutation analysis for the SCN1A gene revealed a missense mutation in exon 2 in the 4-year-old girl. Verapamil was co-administered in both children with a prompt response in controlling status epilepticus, myoclonic jerks, and partial and generalized seizures. The therapeutic effect lasted 13 months in the 14-year-old girl, while it is still present after a 20-month follow-up period in the 4-year-old girl who, in addition, has experienced improvement in motor and language development. The verapamil vVg-CCB, which crosses the blood-brain barrier (BBB): (a) inhibits the P-glycoprotein, an active efflux transporter protein expressed in normal tissue, including the brain, which is believed to contribute to the in situ phenomenon of multidrug resistance; and (b) may regulate membrane depolarization induced by abnormal sodium channels functions by modulating the abnormal Ca++ influxes into neurons with subsequent cell resting. This is the first report on long-lasting verapamil therapy in SMEI. The functional consequences of such in vivo modulating effects on Ca++ channels could contribute to rational targeting for future molecular therapeutic approaches in pharmacoresistant epileptic channelopathies.
Related JoVE Video
A de novo 11p12-p15.4 duplication in a patient with pharmacoresistant epilepsy, mental retardation, and dysmorphisms.
Brain Dev.
PUBLISHED: 01-06-2009
Show Abstract
Hide Abstract
We report a 22-year-old male patient with pharmacoresistant epilepsy, mental retardation and dysmorphisms. Standard cytogenetic analysis revealed a de novo interstitial duplication of the short arm of chromosome 11 (11p). High density array-CGH analysis showed that the rearrangement spans about 35Mb on chromosome 11p12-p15.4. Duplications of 11p are rare and usually involve the distal part of the chromosome arm (11p15), being not associated with epilepsy, whereas our patient showed a unique epileptic phenotype associated with mental retardation and dysmorphic features. The role of some rearranged genes in epilepsy pathogenesis in this patient is also discussed.
Related JoVE Video
Electroclinical presentation and genotype-phenotype relationships in patients with Unverricht-Lundborg disease carrying compound heterozygous CSTB point and indel mutations.
Epilepsia
Show Abstract
Hide Abstract
Unverricht-Lundborg disease (EPM1A) is frequently due to an unstable expansion of a dodecamer repeat in the CSTB gene, whereas other types of mutations are rare. EPM1A due to homozygous expansion has a rather stereotyped presentation with prominent action myoclonus. We describe eight patients with five different compound heterozygous CSTB point or indel mutations in order to highlight their particular phenotypical presentations and evaluate their genotype-phenotype relationships.
Related JoVE Video
Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences.
Epilepsia
Show Abstract
Hide Abstract
Heterozygous mutations of PRRT2, which encodes proline-rich transmembrane protein 2, are associated with heterogeneous phenotypes including benign familial infantile seizures (BFIS), or familial paroxysmal kinesigenic dystonia (PKD). We report a consanguineous Italian family with BFIS/PKD phenotype that contained 14 living members with 6 affected individuals (four men, ranging in age from 6-44 years). We identified the reported c.649dupC (p.Arg217ProfsX8) mutation of PRRT2 gene that cosegregated with the disease and was not observed in 100 controls of matched ancestry. Four patients with BFIS phenotype were heterozygous for this mutation, including the consanguineous parents of the two affected brothers with more severe phenotypes of BFIS/PKD--mental retardation, episodic ataxia, and absences--who were the only individuals to carry a homozygous c.649dupC mutation. This family provides strong evidence that homozygous PRRT2 mutations give rise to more severe clinical disease of mental retardation, episodic ataxia, and absences, and, thus, enlarges the clinical spectrum related to PRRT2 mutations. Moreover, it suggests an additive effect of double dose of the genetic mutation and underscores the complexity of the phenotypic consequences of mutations in this gene.
Related JoVE Video
Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32.
, Michael Steffens, Costin Leu, Ann-Kathrin Ruppert, Federico Zara, Pasquale Striano, Angela Robbiano, Giuseppe Capovilla, Paolo Tinuper, Antonio Gambardella, Amedeo Bianchi, Angela la Neve, Giovanni Crichiutti, Carolien G F de Kovel, Dorothée Kasteleijn-Nolst Trenité, Gerrit-Jan de Haan, Dick Lindhout, Verena Gaus, Bettina Schmitz, Dieter Janz, Yvonne G Weber, Felicitas Becker, Holger Lerche, Bernhard J Steinhoff, Ailing A Kleefuss-Lie, Wolfram S Kunz, Rainer Surges, Christian E Elger, Hiltrud Muhle, Sarah von Spiczak, Philipp Ostertag, Ingo Helbig, Ulrich Stephani, Rikke S Møller, Helle Hjalgrim, Leanne M Dibbens, Susannah Bellows, Karen Oliver, Saul Mullen, Ingrid E Scheffer, Samuel F Berkovic, Kate V Everett, Mark R Gardiner, Carla Marini, Renzo Guerrini, Anna-Elina Lehesjoki, Auli Sirén, Michel Guipponi, Alain Malafosse, Pierre Thomas, Rima Nabbout, Stephanie Baulac, Eric Leguern, Rosa Guerrero, José M Serratosa, Philipp S Reif, Felix Rosenow, Martina Mörzinger, Martha Feucht, Fritz Zimprich, Claudia Kapser, Christoph J Schankin, Arvid Suls, Katrin Smets, Peter De Jonghe, Albena Jordanova, Hande Cağlayan, Zuhal Yapici, Destina A Yalcin, Betul Baykan, Nerses Bebek, Ugur Ozbek, Christian Gieger, Heinz-Erich Wichmann, Tobias Balschun, David Ellinghaus, Andre Franke, Christian Meesters, Tim Becker, Thomas F Wienker, Anne Hempelmann, Herbert Schulz, Franz Rüschendorf, Markus Leber, Steffen M Pauck, Holger Trucks, Mohammad R Toliat, Peter Nürnberg, Giuliano Avanzini, Bobby P C Koeleman, Thomas Sander.
Hum. Mol. Genet.
Show Abstract
Hide Abstract
Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.
Related JoVE Video
PRRT2 is mutated in familial and non-familial benign infantile seizures.
Eur. J. Paediatr. Neurol.
Show Abstract
Hide Abstract
Mutations of protein-rich transmembrane protein 2 (PRRT2) were recently associated to benign familial infantile seizures (BFIS) (MIM 605751) and paroxysmal kinesigenic dyskinesias (PKD) (MIM12800).
Related JoVE Video
Lack of SLC2A1 (glucose transporter 1) mutations in 30 Italian patients with alternating hemiplegia of childhood.
J. Child Neurol.
Show Abstract
Hide Abstract
Alternating hemiplegia of childhood is a rare, predominantly sporadic disorder. Diagnosis is clinical, and little is known about genetics. Glucose transporter 1 deficiency syndrome shares with alternating hemiplegia of childhood paroxysmal and nonparoxysmal symptoms. The aim of the study was to investigate glucose transporter 1 mutations in 30 Italian patients. Genetic material was analyzed by DNA amplification and glucose transporter 1 region sequencing. Mutational analysis findings of the SLC2A1 gene were negative in all patients. The pattern of movement disorders was reviewed. Interictal dystonia and multiple paroxysmal events were typical of alternating hemiplegia of childhood. In conclusion, alternating hemiplegia of childhood is a heterogeneous clinical condition, and although glucose transporter 1 deficiency can represent an undiagnosed cause of this disorder, mutational analysis is not routinely recommended. Alternatively, a careful clinical analysis and the 3-O-methyl-D-glucose uptake test can allow prompt identification of a subgroup of patients with alternating hemiplegia of childhood treatable with a ketogenic diet.
Related JoVE Video
Hypomyelination and congenital cataract: identification of novel mutations in two unrelated families.
Eur. J. Paediatr. Neurol.
Show Abstract
Hide Abstract
Hypomyelination and congenital cataract (HCC) is a rare autosomal recessive white matter disorder characterized by congenital cataract, progressive neurologic impairment, and myelin deficiency in the central and peripheral nervous system, caused by mutations in the FAM126A gene.
Related JoVE Video
PRRT2 mutations are the major cause of benign familial infantile seizures.
Hum. Mutat.
Show Abstract
Hide Abstract
Mutations in PRRT2 have been described in paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with choreoathetosis (PKD with infantile seizures), and recently also in some families with benign familial infantile seizures (BFIS) alone. We analyzed PRRT2 in 49 families and three sporadic cases with BFIS only of Italian, German, Turkish, and Japanese origin and identified the previously described mutation c.649dupC in an unstable series of nine cytosines to occur in 39 of our families and one sporadic case (77% of index cases). Furthermore, three novel mutations were found in three other families, whereas 17% of our index cases did not show PRRT2 mutations, including a large family with late-onset BFIS and febrile seizures. Our study further establishes PRRT2 as the major gene for BFIS alone.
Related JoVE Video
Hyccin, the molecule mutated in the leukodystrophy hypomyelination and congenital cataract (HCC), is a neuronal protein.
PLoS ONE
Show Abstract
Hide Abstract
"Hypomyelination and Congenital Cataract", HCC (MIM #610532), is an autosomal recessive disorder characterized by congenital cataract and diffuse cerebral and peripheral hypomyelination. HCC is caused by deficiency of Hyccin, a protein whose biological role has not been clarified yet. Since the identification of the cell types expressing a protein of unknown function can contribute to define the physiological context in which the molecule is explicating its function, we analyzed the pattern of Hyccin expression in the central and peripheral nervous system (CNS and PNS). Using heterozygous mice expressing the b-galactosidase (LacZ) gene under control of the Hyccin gene regulatory elements, we show that the gene is primarily expressed in neuronal cells. Indeed, Hyccin-LacZ signal was identified in CA1 hippocampal pyramidal neurons, olfactory bulb, and cortical pyramidal neurons, while it did not colocalize with oligodendroglial or astrocytic markers. In the PNS, Hyccin was detectable only in axons isolated from newborn mice. In the brain, Hyccin transcript levels were higher in early postnatal development (postnatal days 2 and 10) and then declined in adult mice. In a model of active myelinogenesis, organotypic cultures of rat Schwann cells (SC)/Dorsal Root Ganglion (DRG) sensory neurons, Hyccin was detected along the neurites, while it was absent from SC. Intriguingly, the abundance of the molecule was upregulated at postnatal days 10 and 15, in the initial steps of myelinogenesis and then declined at 30 days when the process is complete. As Hyccin is primarily expressed in neurons and its mutation leads to hypomyelination in human patients, we suggest that the protein is involved in neuron-to-glia signalling to initiate or maintain myelination.
Related JoVE Video
Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies.
Epilepsia
Show Abstract
Hide Abstract
Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively.
Related JoVE Video
The ?2B adrenergic receptor is mutant in cortical myoclonus and epilepsy.
Ann. Neurol.
Show Abstract
Hide Abstract
Objective Autosomal dominant cortical myoclonus and epilepsy (ADCME) is characterized by distal, fairly rhythmic myoclonus and epilepsy with variable severity. We have previously mapped the disease locus on chromosome 2p11.1-q12.2 by genome-wide linkage analysis. Additional pedigrees affected by similar forms of epilepsy have been associated to chromosome 8q, 5p and 3q, but none of the causing genes has been identified. We aim at identifying the mutant gene responsible for this epileptic form. Methods Co-immunoprecipitation, immunofluorescence and electrophysiology approaches on transfected human cells have been utilized for testing the functional significance of the identified mutation. Results Here we show that mutation in the ?2-adrenergic receptor subtype B (?2B-AR) associates to ADCME by identifying a novel in-frame insertion/deletion in two Italian families. The mutation alters several conserved residues of the third intracellular (3i) loop, neither hampering the ?2B-AR plasma membrane localization nor the arrestin-mediated internalization capacity, but altering the binding with the scaffolding protein spinophilin upon neurotransmitter activation. Spinophilin, in turn, regulates interaction of GPCRs with Regulators of G proteins Signaling proteins. Accordingly, the mutant ?2B-AR increases the epinephrine-stimulated calcium signaling. Interpretation The identified mutation is responsible for ADCME, as the loss of ?2B-AR/spinophilin interaction causes a gain of function effect. This work implicates for the first time the ?-adrenergic system in human epilepsy and opens new ways for understanding the molecular pathway of epileptogenesis, widening the spectrum of possible therapeutic targets. ANN NEUROL 2013. © 2013 American Neurological Association.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.