JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model.
Nanoscale
PUBLISHED: 10-21-2014
Show Abstract
Hide Abstract
miRNA-16 (miR16) plays an important role in modulating the drug resistance of SGC7901 cell lines to adriamycin (ADR). A variety of viral carriers have been designed for miRNA delivery. However, the safety concerns are currently perceived as hampering the clinical application of viral vector-based therapy. Herein a type of magnetic nanoparticles (MNPs) was designed and synthesized using poly(ethylene glycol) (PEG)-coated Fe3O4 nanoparticles as a miRNA delivery system for the purpose of reducing drug resistance of gastric cancer cells by enforcing miR16 expression in SGC7901/ADR cells. The MNPs with good biocompatibility were synthesized by thermal decomposition, and then conjugated with miRNA via electrostatic interaction producing miR16/MNPs. After co-culture with miR16/MNPs, ADR-induced apoptosis of SGC7901/ADR was examined by MTT and TUNEL. miR16/MNPs treatment significantly increased cell apoptosis in vitro. SGC7901/ADR(fluc) tumor-bearing nude mice under ADR therapy were treated with miR16/MNPs by tail vein injection for in vivo study. After intraperitoneal injection of ADR, tumor volume measurement and fluorescence imaging were performed to for the death of SGC7901/ADR cells in vivo. Results showed that miR16/MNPs were able to significantly suppress SGC7901/ADR tumor growth, probably through increasing SGC7901/ADR cells' sensitivity to ADR. Our results suggest the efficient delivery of miR16 by MNPs as a novel therapeutic strategy for drug resistant tumor treatment.
Related JoVE Video
Inhibitors of nucleotidyltransferase superfamily enzymes suppress herpes simplex virus replication.
Antimicrob. Agents Chemother.
PUBLISHED: 09-29-2014
Show Abstract
Hide Abstract
Herpesviruses are large double-stranded DNA viruses that cause serious human diseases. Herpesvirus DNA replication depends on multiple processes typically catalyzed by nucleotidyltransferase superfamily (NTS) enzymes. Therefore, we investigated whether inhibitors of NTS enzymes would suppress replication of herpes simplex virus 1 (HSV-1) and HSV-2. Eight of 42 NTS inhibitors suppressed HSV-1 and/or HSV-2 replication by >10-fold at 5 ?M, with suppression at 50 ?M reaching ?1 million-fold. Five compounds in two chemical families inhibited HSV replication in Vero and human foreskin fibroblast cells as well as the approved drug acyclovir did. The compounds had 50% effective concentration values as low as 0.22 ?M with negligible cytotoxicity in the assays employed. The inhibitors suppressed accumulation of viral genomes and infectious particles and blocked events in the viral replication cycle before and during viral DNA replication. Acyclovir-resistant mutants of HSV-1 and HSV-2 remained highly sensitive to the NTS inhibitors. Five of six NTS inhibitors of the HSVs also blocked replication of another herpesvirus pathogen, human cytomegalovirus. Therefore, NTS enzyme inhibitors are promising candidates for new herpesvirus treatments that may have broad efficacy against members of the herpesvirus family.
Related JoVE Video
Regulation profile of phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs) components towards UDP-glucuronosyltransferases (UGTs) isoforms.
Xenobiotica
PUBLISHED: 09-27-2014
Show Abstract
Hide Abstract
Abstract 1.? Endogenous compounds have been reported to be the regulators of UDP-glucuronosyltransferases (UGTs) isoforms. This study aims to investigate the regulatory effects of the activity of UGT isoforms by two important lipid components phosphatidylcholine (PC) and lysophosphatidylcholines (LPC) using in vitro incubation system. 2.? UGTs supersomes-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as the probe reaction to evaluate the inhibition of compounds towards UGT isoforms except UGT1A4, and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reaction was utilized to phenotype the activity of UGT1A4. 3.? About 50??M of LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0 exhibited inhibition towards more than 90% activity of UGT isoforms, and other LPC and PC components showed negligible inhibitory potential towards all the UGT isoforms. UGT1A6 and UGT1A8 were identified to be the most sensitive UGT isoforms susceptible for the inhibition by LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0, indicating the strong influence of these LPC and PC components towards UGT1A6 and UGT1A8-catalyzed metabolic reaction when the concentrations of these components increased.
Related JoVE Video
Multicolored-Fluorescence Switching of ICT-Type Organic Solids with Clear Color Difference: Mechanically Controlled Excited State.
Chemistry
PUBLISHED: 09-23-2014
Show Abstract
Hide Abstract
A donor-acceptor-type fluorophore containing a twisted diphenylacrylonitrile and triphenylamine has been developed by using the Suzuki reaction. The system indicates typical intramolecular charge-transfer properties. Upon mechanical grinding or hydrostatic pressure, the fluorophore reveals a multicolored fluorescence switching. Interestingly, a fluorescence color transition from green to red was clearly observed, and the change of photoluminescent (PL) wavelength gets close to 111?nm. The mechanisms of high-contrast mechanochromic behavior are fully investigated by techniques including powder XRD, PL lifetime, high-pressure PL lifetime, and Raman spectra analysis. The tremendous PL wavelength shift is attributed to gradual transition of excited states from the local excited state to the charge-transfer state.
Related JoVE Video
An Adaptive Transposable Element Insertion in the Regulatory Region of the EO Gene in the Domesticated Silkworm, Bombyx mori.
Mol. Biol. Evol.
PUBLISHED: 09-10-2014
Show Abstract
Hide Abstract
Although there are many studies to show a key role of transposable elements (TEs) in adaptive evolution of higher organisms, little is known about the molecular mechanisms. In this study, we found that a partial TE (Taguchi) inserted in the cis-regulatory region of the silkworm ecdysone oxidase (EO) gene, which encodes a crucial enzyme to reduce the titer of molting hormone (20-hydroxyecdysone, 20E). The TE insertion occurred during domestication of silkworm and the frequency of the TE insertion in the domesticated silkworm (Bombyx mori) is high, 54.24%. The linkage disequilibrium in the TE inserted strains of the domesticated silkworm was elevated. Molecular population genetics analyses suggest that this TE insertion is adaptive for the domesticated silkworm. Luminescent reporter assay shows that the TE inserted in the cis-regulatory region of the EO gene functions as a 20E-induced enhancer of the gene expression. Further, phenotypic bioassay indicates that the silkworm with the TE insertion exhibited more stable developmental phenotype than the silkworm without the TE insertion when suffering from food shortage. Thus, the inserted TE in the cis-regulatory region of the EO gene increased developmental uniformity of silkworm individuals through regulating 20E metabolism, partially explaining transformation of a domestication developmental trait in the domesticated silkworm. Our results emphasize the exceptional role of gene expression regulation in developmental transition of domesticated animals.
Related JoVE Video
Anti-oxidative stress effect of loading-dose rosuvastatin prior to percutaneous coronary intervention in patients with acute coronary syndrome: a prospective randomized controlled clinical trial.
Clin Drug Investig
PUBLISHED: 09-05-2014
Show Abstract
Hide Abstract
Administration of a loading dose of a statin (HMG-CoA reductase inhibitor) prior to percutaneous coronary intervention (PCI) contributes to protection from myocardial ischemic-reperfusion injury. This trial was designed to investigate the effect and mechanism of loading-dose rosuvastatin therapy before PCI in patients with acute coronary syndrome.
Related JoVE Video
Association of decreased expression of long non-coding RNA LOC285194 with chemoradiotherapy resistance and poor prognosis in esophageal squamous cell carcinoma.
J Transl Med
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
Expression of the long non-coding RNA (lncRNA) LOC285194 was previously shown to be correlated with aggressive clinicopathological features and poor prognosis in several cancers. The aim of the present study was to explore the relationship between LOC285194 expression and clinical outcomes in esophageal squamous cell carcinoma (ESCC), so as to assess whether it could be a novel biomarker for prognosis and prediction of response to therapy on ESCC patients.
Related JoVE Video
Attenuation of lung cancer stem cell tumorigenesis and metastasis by cisplatin.
Exp. Lung Res.
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
To investigate the effect of cisplatin on the growth and metastasis abilities of lung cancer stem cells (CSCs) via molecular imaging.
Related JoVE Video
A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.
PLoS ONE
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).
Related JoVE Video
Activation of Liver X Receptor Improves Viability of Adipose-Derived Mesenchymal Stem Cells to Attenuate Myocardial Ischemia Injury Through TLR4/NF-?B and Keap-1/Nrf-2 Signaling Pathways.
Antioxid. Redox Signal.
PUBLISHED: 06-11-2014
Show Abstract
Hide Abstract
Abstract Aims: Clinical application of cellular therapy for cardiac regeneration is significantly hampered by the low retention of engrafted cells, mainly attributable to the poor microenvironment dominated by inflammation and oxidative stress in the host's infarcted myocardium. This study aims at investigating whether liver X receptor (LXR) agonist T0901317 will improve survival of adipose-derived mesenchymal stem cells (AD-MSCs) after transplantation into infarcted hearts. Results: Noninvasive in vivo bioluminescence imaging and histological staining showed that LXR agonist T0901317 improved the retention and survival of intramyocardially injected AD-MSCs. Moreover, combined therapy of LXR agonist and AD-MSCs inhibited host cardiomyocyte apoptosis, reduced fibrosis, and improved cardiac function, while it concomitantly decreased inflammatory cytokines (e.g., tumor necrosis factor-? and interleukin-6) and increased growth factor (e.g., vascular endothelial growth factor and basic fibroblast growth factor) expression in infarct myocardium. To reveal possible mechanisms, AD-MSCs were subjected to hypoxia/serum deprivation (H/SD) injury to simulate ischemic conditions in vivo. The LXR agonist (10(-7) mM) improved AD-MSC survival under H/SD condition. Western blot revealed that the LXR agonist reduced TLR4, TRAF-6, and MyD88 protein expression, inhibited I?B? phosphorylation and NF-?B-p65 nuclear translocation, which resulted in accelerated Keap-1 protein degradation, enhanced Nrf-2 nuclear translocation, and increased HO-1 protein expression. Innovation and Conclusion: LXR agonist can enhance the functional survival of transplanted AD-MSCs in infarcted myocardium, at least partially, via modulation of the TLR4/NF-?B and Keap-1/Nrf-2 signaling pathways. Moreover, combined therapy of LXR agonist and AD-MSCs has a synergetic effect on cardiac repair and functional improvement after infarction. Antioxid. Redox Signal. 00, 000-000.
Related JoVE Video
Ischemia postconditioning preventing lung ischemia-reperfusion injury.
Gene
PUBLISHED: 05-15-2014
Show Abstract
Hide Abstract
This study evaluates the inhibitory effect of IPO against ischemia reperfusion (I/R) induced lung injury in rats.
Related JoVE Video
Selective inhibition of inositol hexakisphosphate kinases (IP6Ks) enhances mesenchymal stem cell engraftment and improves therapeutic efficacy for myocardial infarction.
Basic Res. Cardiol.
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
5-Diphosphoinositol pentakisphosphate (IP7), formed by a family of inositol hexakisphosphate kinases (IP6Ks), has been demonstrated to be a physiologic inhibitor of Akt. IP6K inhibition may increase Akt activation in mesenchymal stem cells (MSCs), resulting in enhanced cardiac protective effect after transplantation. The aim of this study was to investigate the role of IP6Ks for improving MSCs' functional survival and cardiac protective effect after transplantation into infarcted mice hearts. Bone marrow-derived mesenchymal stem cells, isolated from dual-reporter firefly luciferase and enhanced green fluorescent protein positive (Fluc(+)-eGFP(+)) transgenic mice, were preconditioned with IP6Ks inhibitor TNP (0.5, 1, 5, and 10 ?mol/L) for 2 h followed by 6 h of hypoxia and serum deprivation (H/SD) injury. TNP concentration dependently significantly decreased IP7 production with increased Akt phosphorylation. Moreover, TNP at 10 ?mol/L significantly improved the viability and enhanced the paracrine effect of MSCs after H/SD. Furthermore, MSCs were transplanted into infarcted hearts with or without selective IP6Ks inhibition. Longitudinal in vivo bioluminescence imaging and immunofluorescent staining revealed that TNP pretreatment enhanced the survival of engrafted MSCs, which promoted the anti-apoptotic and pro-angiogenic efficacy of MSCs in vivo. Furthermore, MSC therapy with IP6Ks inhibition significantly decreased fibrosis and preserved heart function. This study demonstrates that inhibition of IP6Ks promotes MSCs engraftment and paracrine effect in infarcted hearts at least in part by down-regulating IP7 production and enhancing Akt activation, which might contribute to the preservation of myocardial function after MI.
Related JoVE Video
Comparison of long non?coding RNAs, microRNAs and messenger RNAs involved in initiation and progression of esophageal squamous cell carcinoma.
Mol Med Rep
PUBLISHED: 05-06-2014
Show Abstract
Hide Abstract
Traditionally, cancer research has focused on protein?coding genes, which are considered the principal effectors and regulators of tumorigenesis. Non?coding RNAs, in particular microRNAs (miRNAs) and long non?coding RNAs (lncRNAs), have been widely reported to be important in the regulation of tumorigenesis and cancer development. However, to the best of our knowledge, investigation of the expression profiles of lncRNAs and a comparison of the involvement of lncRNAs, miRNAs and messenger RNAs (mRNAs) in esophageal tumorigenesis and development have not previously been performed. In the current study, intrinsic associations among the expression profiles of lncRNAs, miRNAs and mRNAs from normal esophageal tissues and those from cancer tissues were investigated. Oligonucleotide microarrays were used to detect the expression profiles of the three types of RNA in the canceration processes of human esophageal squamous cell carcinoma (ESCC) tissues. It was demonstrated that the different RNAs exhibit associated patterns of expression among normal esophageal epithelium, low?grade intraepithelial neoplasia (LGIN), high?grade intraepithelial neoplasia (HGIN), and carcinoma tissues, particularly in the critical period of canceration (HGIN to ESCC). Furthermore, the results indicated a high level of similarity in the potential function of lncRNAs, miRNAs and mRNAs in the processes of ESCC development. In the current study, a first generation atlas of lncRNA profiling and its association with miRNAs and mRNAs in the canceration processes of ESCC were presented.
Related JoVE Video
Impact of the Complexity of Bifurcation Lesions Treated With Drug-Eluting Stents: The DEFINITION Study.
JACC Cardiovasc Interv
PUBLISHED: 04-19-2014
Show Abstract
Hide Abstract
The present study established criteria to differentiate simple from complex bifurcation lesions and compared 1-year outcomes stratified by lesion complexity after provisional stenting (PS) and 2-stent techniques using drug-eluting stents.
Related JoVE Video
Inhibition potential of UDP-glucuronosyltransferases (Ugts) 1A isoforms by the analogue of resveratrol, bakuchiol.
Pharmazie
PUBLISHED: 03-08-2014
Show Abstract
Hide Abstract
Bakuchiol is a promising anti-tumor candidate with resveratrol-like structure. The present study aims to evaluate the inhibition potential of bakuchiol towards UDP-glucuronosyltransferases (UGT) 1A isoforms. An in vitro incubation system using 4-methylumbelliferone (4-MU) glucuronidation was used to evaluate the inhibition capability of bakuchiol towards UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A9 and 1A10. The glucuronidation of trifluoperazine (TFP) was employed as the probe reaction to determine bakuchiol's inhibition towards UGT1A4. At 1 microM and 10 microM of bakuchiol, no or weak inhibition was observed for all the tested UGT1A isoforms. At 100 microM of bakuchiol, the activity of UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9 and 1A10 was inhibited by -46.2%, 74.7%, 17.8%, 98.7%, 70.4%, 99.2%, 75.8%, and 93.3%, respectively. Further inhibition kinetic behaviour was determined for UGT1A6, 1A8, and 1A10. Both Dixon plot and Lineweaver-Burk plot showed the noncompetitive inhibition of bakuchiol towards all these three UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 5.3, 1.8, and 92.6 microM for UGT1A6, 1A8, and 1A10, respectively. In combination with the in vivo exposure of bakuchiol, the high possibility of in vivo inhibition of UGT1A6 and 1A8 was predicted. However, relatively low possibility of in vivo inhibition towards UGT1A10 was predicted due to lower in vivo concentration of bakuchiol than its inhibition parameter (Ki). All these information will be helpful for the R&D of bakuchiol as a promising anti-tumor drug.
Related JoVE Video
The role of the autophagy in myocardial ischemia/reperfusion injury.
Biochim. Biophys. Acta
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
Autophagy is an intracellular process responsible for damaged or unnecessary protein and organelle degradation. In the heart, autophagy occurs at basal level and dysregulated autophagy is associated with a variety of cardiovascular diseases. Autophagy is enhanced in ischemia as well as in the reperfusion phase during cardiac ischemia reperfusion (I/R) injury. More importantly, recent studies revealed that autophagy exerted both beneficial and detrimental effects in pathology of cardiac ischemia reperfusion. This paper is to review the functional significance of autophagy in cardiac ischemia reperfusion injury and discuss underlying signaling pathways. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Related JoVE Video
Inositol pyrophosphates mediate the effects of aging on bone marrow mesenchymal stem cells by inhibiting Akt signaling.
Stem Cell Res Ther
PUBLISHED: 03-06-2014
Show Abstract
Hide Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been proposed as an ideal autologous stem cell source for cell-based therapy for myocardial infarction (MI). However, decreased viability and impaired function of aged MSCs hampered the therapeutic efficacy of engrafted MSCs, and the underlying mechanisms remain unclarified. Here, we investigated the role of inositol phosphates 6 kinase (IP6Ks) inhibition on the therapeutic efficacy of BM-MSCs and its underlying mechanism.
Related JoVE Video
Herb-drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7.
Toxicol. Appl. Pharmacol.
PUBLISHED: 02-26-2014
Show Abstract
Hide Abstract
Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7.
Related JoVE Video
Development and application of an oil spill model with wave-current interactions in coastal areas.
Mar. Pollut. Bull.
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
The present paper focuses on developing a numerical oil spill model that incorporates the full three-dimensional wave-current interactions for a better representation of the spilled oil transport mechanics in complicated coastal environments. The incorporation of surface wave effects is not only imposing a traditional drag coefficient formulation at the free surface, but also the 3D momentum equations are adjusted to include the impact of the vertically dependent radiation stresses on the currents. Based on the current data from SELFE and wave data from SWAN, the oil spill model utilizes oil particle method to predict the trajectory of individual droplets and the oil concentration. Compared with the observations in Dalian New Port oil spill event, the developed model taking into account wave-current coupling administers to giving better conformity than the one without. The comparisons demonstrates that 3D radiation stress impacts the spill dynamics drastically near the sea surface and along the coastline, while having less impact in deeper water.
Related JoVE Video
Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis.
Tumour Biol.
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
LncRNA SPRY4-IT1 has been shown to promote the progression of melanoma. However, the role of lncRNA SPRY4-IT1 in human esophageal squamous cell carcinoma (ESCC) remains unclear. The purpose of this study is to investigate the clinical significance and biological functions of SPRY4-IT1 in ESCC. The expression levels of lncRNA SPRY4-IT in 92 ESCC patients and 8 ESCC cell lines were evaluated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The prognostic significance was evaluated using Kaplan-Meier and Cox regression analyses. Small interfering RNA (siRNA) was used to suppress SPRY4-IT1 expression in ESCC cell lines. Both in vitro and in vivo assays were performed to further explore its role in tumor progression. SPRY4-IT1 levels were significantly higher in ESCC tissues and cells than in corresponding adjacent noncancerous tissues and nontumorigenic esophageal epithelial cells, and the ESCC patients with higher SPRY4-IT1 expression had an advanced clinical stage and poorer prognosis than those with lower SPRY4-IT1 expression. The multivariate analysis revealed that SPRY4-IT1 expression level is an independent prognostic factor in ESCC patients. In vitro assays demonstrated that knockdown of SPRY4-IT1 reduced cell proliferation, invasiveness, and migration. In vivo assays demonstrated that knockdown of SPRY4-IT1 decreases cell growth. SPRY4-IT1 is a novel molecule involved in ESCC progression, which may provide a potential prognostic biomarker and a potential target for therapeutic intervention.
Related JoVE Video
The role of Hath6, a newly identified shear-stress-responsive transcription factor, in endothelial cell differentiation and function.
J. Cell. Sci.
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
The key regulators of endothelial differentiation that is induced by shear stress are mostly unclear. Human atonal homolog 6 (Hath6 or ATOH8) is an endothelial-selective and shear-stress-responsive transcription factor. In this study, we sought to elucidate the role of Hath6 in the endothelial specification of embryonic stem cells. In a stepwise human embryonic stem cell to endothelial cell (hESC-EC) induction system, Hath6 mRNA was upregulated synchronously with endothelial determination. Subsequently, gain-of-function and loss-of-function studies of Hath6 were performed using the hESC-EC induction model and endothelial cell lines. The overexpression of Hath6, which mimics shear stress treatment, resulted in an increased CD45(-)CD31(+)KDR(+) population, a higher tubular-structure-formation capacity and increased endothelial-specific gene expression. By contrast, the knockdown of Hath6 mRNA markedly decreased endothelial differentiation. Hath6 also facilitated the maturation of endothelial cells in terms of endothelial gene expression, tubular-structure formation and cell migration. We further demonstrated that the gene encoding eNOS is a direct target of Hath6 through a reporter system assay and western blot analysis, and that the inhibition of eNOS diminishes hESC-EC differentiation. These results suggest that eNOS plays a key role in linking Hath6 to the endothelial phenotype. Further in situ hybridization studies in zebrafish and mouse embryos indicated that homologs of Hath6 are involved in vasculogenesis and angiogenesis. This study provides the first confirmation of the positive impact of Hath6 on human embryonic endothelial differentiation and function. Moreover, we present a potential signaling pathway through which shear stress stimulates endothelial differentiation.
Related JoVE Video
Combination of amino acid/dipeptide with nitric oxide donating oleanolic acid derivatives as PepT1 targeting antitumor prodrugs.
J. Med. Chem.
PUBLISHED: 01-22-2014
Show Abstract
Hide Abstract
By taking advantage of the cytotoxic effect of nitric oxide (NO) and PepT1 for molecule-targeted drug delivery, a series of amino acid/dipeptide diester prodrugs of NO-donating oleanolic acid derivatives were designed and synthesized. Two prodrugs 6a and 8a showed potent cytotoxcity, which is probably due to their high PepT1 affinity and NO-releasing ability. Furthermore, the aqueous solubility of the prodrugs was also significantly enhanced because of the hydrophilic amino acid/dipeptide promoiety.
Related JoVE Video
The key features of percutaneous coronary intervention with chronic total obstruction lesion of right coronary artery.
Ther Adv Cardiovasc Dis
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
We summarize recent research on percutaneous coronary intervention of chronic total occlusion of the right coronary artery. We then explain the method and technology of forward and backward revascularization in chronic total occlusion of the right coronary artery. Finally, we emphasize the monitoring methods and key treating measures for better prognosis of the patients.
Related JoVE Video
Effects of cannabinoid receptor type 2 on endogenous myocardial regeneration by activating cardiac progenitor cells in mouse infarcted heart.
Sci China Life Sci
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
Cannabinoid receptor type 2 (CB2) activation is recently reported to promote proliferation of some types of resident stem cells (e.g., hematopoietic stem/progenitor cell or neural progenitor cell). Resident cardiac progenitor cell (CPC) activation and proliferation are crucial for endogenous cardiac regeneration and cardiac repair after myocardial infarction (MI). This study aims to explore the role and possible mechanisms of CB2 receptor activation in enhancing myocardial repair. Our results revealed that CB2 receptor agonist AM1241 can significantly increase CPCs by c-kit and Runx1 staining in ischemic myocardium as well as improve cardiomyocyte proliferation. AM1241 also decreased serum levels of MDA, TNF-? and IL-6 after MI. In addition, AM1241 can ameliorate left ventricular ejection fraction and fractional shortening, and reduce fibrosis. Moreover, AM1241 treatment markedly increased p-Akt and HO-1 expression, and promoted Nrf-2 nuclear translocation. However, PI3K inhibitor wortmannin eliminated these cardioprotective roles of AM1241. In conclusion, AM1241 could induce myocardial regeneration and improve cardiac function, which might be associated with PI3K/Akt/Nrf2 signaling pathway activation. Our findings may provide a promising strategy for cardiac endogenous regeneration after MI.
Related JoVE Video
Nonoperative management for perforated peptic ulcer: who can benefit?
Asian J Surg
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
Although nonoperative management for perforated peptic ulcer (PPU) has been used for several decades, the indication is still unclear. A clinicoradiological score was sought to predict who can benefit from it.
Related JoVE Video
A highly selective ratiometric fluorescent probe for in vitro monitoring and cellular imaging of human carboxylesterase 1.
Biosens Bioelectron
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
A new ratiometric fluorescent probe derived from 2-(2-hydroxy-3-methoxyphenyl) benzothiazole (HMBT) has been developed for selective monitoring of human carboxylesterase 1 (hCE1). The probe is designed by introducing benzoyl moiety to HMBT. The prepared latent spectroscopic probe 1 displays satisfying stability under physiological pH conditions with very low background signal. Both the reaction phynotyping and chemical inhibition assays demonstrated that hCE1 mediated the specific cleavage of the carboxylic ester bond of probe 1 in human biological samples. The release of HMBT leads to a remarkable red-shifted emission in fluorescence spectrum (120 nm large emission shift). Furthermore, human cell-based assays show that probe 1 is cell membrane permeable, and it can be used for bioassay and cellular imaging of hCE1 activity in HepG2 cells. These findings lead to the development of a simple and sensitive fluorescent method for measurement of hCE1 activity in vitro or in living cells, in the presence of additional enzymes or endogenous compounds.
Related JoVE Video
HCV genome-wide genetic analyses in context of disease progression and hepatocellular carcinoma.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV's sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon ?-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.
Related JoVE Video
Myocardial protective effect of extracellular superoxide dismutase gene modified bone marrow mesenchymal stromal cells on infarcted mice hearts.
Theranostics
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Extracellular superoxide dismutase (ecSOD) is a unique scavenger of superoxide anions and a promising target of gene therapy for ischemia/reperfusion injury (I/R). However, conventional gene therapies have limitation in effectiveness and efficiency. This study aimed to investigate the protective effects of ecSOD gene modified bone marrow mesenchymal stromal cells (BMSCs) on cardiac function improvement in mice infarcted heart.
Related JoVE Video
Comparative Analysis of Hepatitis B Virus Polymerase Sequences Required for Viral RNA Binding, RNA Packaging and Protein Priming.
J. Virol.
PUBLISHED: 11-13-2013
Show Abstract
Hide Abstract
Hepatitis B virus replicates a DNA genome through reverse transcription of a pregenomic RNA (pgRNA) by using a multi-functional polymerase (HP). A critical function of HP is its specific association with a viral RNA signal termed ? (H?) located on pgRNA, which is required for specific packaging of pgRNA into viral nucleocapsids and initiation of viral reverse transcription. HP initiates reverse transcription by using itself as a protein primer (protein priming) and H? as the obligatory template. HP is made up of four domains including the terminal protein (TP), the spacer, the reverse transcriptase (RT), and the RNase H domains. A recently developed, H?-dependent in vitro protein priming assay was used in this study to demonstrate that almost the entire TP and RT domains and most of the RNase H domain were required for protein priming. Specific residues within TP, RT, and the spacer were identified as critical for HP-H? binding and/or protein priming. Comparison of HP sequence requirements for H? binding, pgRNA packaging and protein priming allowed the classification of the HP mutants into five groups, each with distinct effects on these complex and related processes. Detailed characterization of HP requirements for these related and essential functions of HP will further elucidate the mechanisms of its multiple functions and aid in targeting these functions for antiviral therapy.
Related JoVE Video
Design, synthesis and anti-Alzheimer properties of dimethylaminomethyl-substituted curcumin derivatives.
Bioorg. Med. Chem. Lett.
PUBLISHED: 10-20-2013
Show Abstract
Hide Abstract
Eight dimethylaminomethyl-substituted curcumin derivatives were designed and synthesized. The antioxidant test revealed that the synthesized compounds had higher free radical scavenging activity towards both 2,2-diphenyl-1-picrylhydrazyl free radicals (DPPH) (IC50 1.5-29.9?M) and galvinoxyl radicals (IC50 4.9-41.1?M) than the lead compound curcumin. Besides, compound 3a could effectively inhibit the A? self-aggregation in vitro. Investigated in phosphate-buffered solutions (pH=7.4) in the presence or absence of 0.1% FBS 3a showed a good stability while curcumin did not. Furthermore, 3a showed a good lipophilicity (logP=3.48), suggesting a potential ability to penetrate the blood-brain-barrier. The aqueous solubility of the hydrochloride salt of 3a (16.7mg/mL) has also been significantly improved as compared with curcumin (<0.1mg/mL).
Related JoVE Video
A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders.
J. Lipid Res.
PUBLISHED: 10-10-2013
Show Abstract
Hide Abstract
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ? UGT1A7 ? UGT1A10 ? UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.
Related JoVE Video
A highly selective probe for human cytochrome P450 3A4: isoform selectivity, kinetic characterization and its applications.
Chem. Commun. (Camb.)
PUBLISHED: 09-13-2013
Show Abstract
Hide Abstract
Bufalin 5?-hydroxylation was found to be an isoform-specific biotransformation probe substrate for cytochrome P450 3A4 (CYP3A4). The probe reaction was well-characterized and it can be used for measuring the real catalytic activities of CYP3A4 from different enzyme sources.
Related JoVE Video
Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis.
Eur. Heart J.
PUBLISHED: 09-11-2013
Show Abstract
Hide Abstract
The objective of the present analysis was to systematically examine the effect of intracoronary bone marrow cell (BMC) therapy on left ventricular (LV) function after ST-segment elevation myocardial infarction in various subgroups of patients by performing a collaborative meta-analysis of randomized controlled trials.
Related JoVE Video
Improvement of crystallization of borazine-derived boron nitride using small amounts of Fe or Ni nanoparticles.
Nanoscale
PUBLISHED: 09-03-2013
Show Abstract
Hide Abstract
Homogenously dispersed Fe and Ni nanoparticles (NPs) are introduced into boron nitride (BN) by pyrolysis of cured borazine containing soluble ferrocene or nickelocene. The crystallization of the borazine-derived BN is significantly improved by using no more than 1 wt% NPs. X-ray diffraction (XRD) suggests that the improved BN obtained at 1200 °C exhibits a higher degree of crystallization close to that obtained at 1600 °C without additives. Transmission electron microscopy (TEM) indicates the formation of Fe or Ni NP-core multilayer BN spheres embedded in amorphous BN, and a corresponding core-shell model is suggested. The Ni NPs exhibit a higher crystallization than Fe NPs, possibly due to the higher solubility of boron in Ni NPs at elevated temperatures. In addition, we discuss the mechanisms by which Fe and Ni NPs improve the crystallization of BN from borazine.
Related JoVE Video
Protective Effects of Low-Frequency Magnetic Fields on Cardiomyocytes from Ischemia Reperfusion Injury via ROS and NO/ONOO(-).
Oxid Med Cell Longev
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
Background. Cardiac ischemia reperfusion (I/R) injury is associated with overproduction of reactive oxygen species (ROS). Low frequency pulse magnetic fields (LFMFs) have been reported to decrease ROS generation in endothelial cells. Whether LFMFs could assert protective effects on myocardial from I/R injury via ROS regulation remains unclear. Methods. To simulate in vivo cardiac I/R injury, neonatal rat cardiomyocytes were subjected to hypoxia reoxygenation (H/R) with or without exposure to LFMFs. Cell viability, apoptosis index, ROS generation (including O2 (-) and ONOO(-)), and NO production were measured in control, H/R, and H/R + LFMF groups, respectively. Results. H/R injury resulted in cardiomyocytes apoptosis and decreased cell viability, whereas exposure to LFMFs before or after H/R injury significantly inhibited apoptosis and improved cell viability (P < 0.05). LFMFs treatment could suppress ROS (including O2 (-) and ONOO(-)) generation induced by H/R injury, combined with decreased NADPH oxidase activity. In addition, LFMFs elevated NO production and enhanced NO/ONOO(-) balance in cardiomyocytes, and this protective effect was via the phosphorylation of endothelial nitric oxide synthase (eNOS). Conclusion. LFMFs could protect myocardium against I/R injury via regulating ROS generation and NO/ONOO(-) balance. LFMFs treatment might serve as a promising strategy for cardiac I/R injury.
Related JoVE Video
Automatic information extraction for computerized clinical guideline.
Stud Health Technol Inform
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
Clinical Guidelines (CG) are recommendations on the appropriate treatment and care of people with specific diseases and conditions. CG should be used by both physicians and patients to make the informed decision. However, the CGs are not well used due to their complexity and because they are frequently updated. The computerized CGs are proposed to make use of the computer to do the decision making. However, it needs a lot of human effort to transform the narrative CG into computerized CG. In this paper, we proposed a method to use the NLP techniques to extract the fine-grained information from the text based CG automatically. Such information could be easily converted to the computer interpretable models.
Related JoVE Video
Improving physician practice efficiency by learning lab test ordering pattern.
Stud Health Technol Inform
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
The system of electronic medical records (EMR) has been widely used in physician practice. In China, physicians have the time pressure to provide care to many patients in a short period. Improving practice efficiency is a promising direction to mitigate this predicament. During the encounter, ordering lab test is one of the most frequent actions in EMR system. In this paper, our motivation is to save physicians time by providing lab test ordering list to facilitate physician practice. To this end, we developed weight based multi-label classification framework to learn to order lab test for the current encounter according to the historical EMR. Particularly, we propose to learn the physician-specific lab test ordering pattern as different physicians may have different practice behavior on the same population. Experimental results on the real data set demonstrate that physician-specific models can outperform the baseline.
Related JoVE Video
Using data mining techniques on discovering physician practice patterns regarding to medication prescription - an exploratory study.
Stud Health Technol Inform
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
In this paper, we propose a data mining method for exploring the decision-making processes of physicians from electronic patient records and test it on the medical records of patients with type-2 diabetes mellitus. This method runs in two modes: general and partitioned. In the general mode, it mines rules from the whole medical records. In the partitioned mode, with a given partition factor, medical records are assigned into categories and a corresponding set of rules will be discovered for each category. Medication prescription predictions can be provided based on these rules. By comparing mined rules and prescription prediction accuracy under different modes, we discover that: 1) both the averaged precision and recall rate of the general mode can reach around 80%; 2) physicians tend to conform to the guideline instead of having their own preferences; 3) the medication decision can be affected by some hidden factors. These findings suggest this method show promise in discovering physician practice patterns and obtaining insights from real medical records.
Related JoVE Video
Mining information dependency in outpatient encounters for chronic disease care.
Stud Health Technol Inform
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
Chronic disease care, e.g., care of type 2 diabetes mellitus, is a long-term, complex process involving collaboration and coordination among multiple healthcare providers. To facilitate and accelerate the process, it is key to understand the information flow and identify the information dependency (e.g., temporal dependency of co-occurrence and sequential occurrence) during care provision, which is also the objective of this work. Since most health interventions and decisions are made in outpatient encounters for chronic patients, in this paper, we propose an approach to mine temporal information dependency in outpatient encounter records using sequential pattern mining techniques. By exploring the real data of over 10,000 type 2 diabetes patients from three hospitals, the proposed approach effectively works out sets of meaningful information dependency patterns for different patient groups. The discovered information dependency can be used to guide the information sharing between different health providers, and optimize the chronic disease care coordination.
Related JoVE Video
Mechanistic molecular imaging of cardiac cell therapy for ischemic heart disease.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 07-26-2013
Show Abstract
Hide Abstract
Cell-based myocardial regeneration has emerged as a promising therapeutic option for ischemic heart disease, though not yet at the level of routine clinical utility. Despite the encouraging results from initial preclinical studies that have demonstrated improved function and reduced infarct size of the ischemic myocardium following several candidate cell transplantation, the beneficial effects and molecular mechanisms of cardiac cell therapy are still unclear in clinical applications to date, and much remains to be optimized. To improve engraftment, accurate methods are required for tracking cell fate and quantifying functional outcome. In the present review, we summarized the current status and challenges of cardiac cell therapy for ischemic heart disease and discussed the strengths and limitations of currently available in vivo imaging techniques with special focus on the newly developed multimodality approaches for assessing the efficacy of engrafted donor cells. We also addressed the hurdles these imaging modalities are facing, including issues regarding immunogenicity and tumorigenicity of transplanted stem cells, and provided some the future perspectives on stem cell imaging.
Related JoVE Video
Upregulation of the Long Non-coding RNA PlncRNA-1 Promotes Esophageal Squamous Carcinoma Cell Proliferation and Correlates with Advanced Clinical Stage.
Dig. Dis. Sci.
PUBLISHED: 07-21-2013
Show Abstract
Hide Abstract
Recent studies revealed that long noncoding RNAs (lncRNAs) play critical regulatory roles in cancer biology. PlncRNA-1 is one of lncRNAs that is associated with cell apoptosis and proliferation of prostate cancer.
Related JoVE Video
Adaptive inflammatory microenvironment for cell-based regeneration in ischemic cardiovascular disease.
Organogenesis
PUBLISHED: 07-03-2013
Show Abstract
Hide Abstract
Cell-based therapy has emerged to be a promising strategy for alleviating the heavy burden of ischemic cardiovascular disease for nearly two decades, despite a variety of pending questions about its availability and efficacy. One question is whether and how the cells behave for regeneration in vivo, which could be limited or potentiated by the inflammatory microenvironment following myocardial infarction or critical limb ischemia. To this end, we hypothesize that the "adaptive inflammatory microenvironment" is pertinent to the cell-based regeneration, and make a brief comment on it based upon recent evidence.
Related JoVE Video
mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo.
Stem Cells
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Poor cell survival severely limits the beneficial effects of stem cell therapy for peripheral arterial disease (PAD). This study was designed to investigate the role of mammalian target of rapamycin (mTOR) in the survival and therapeutic function of transplanted murine adipose-derived stromal cells (mADSCs) in a murine PAD model. mADSCs (1.0 × 10(7)) were isolated from dual-reporter firefly luciferase and enhanced green fluorescent protein-positive transgenic mice, intramuscularly implanted into the hind limb of C57BL/6 mice after femoral artery ligation/excision, and monitored using noninvasive bioluminescence imaging (BLI). Although engrafted mADSCs produced antiapoptotic/proangiogenic effects in vivo by modulating the inflammatory and angiogenic cytokine response involving the mTOR pathway, longitudinal BLI revealed progressive death of post-transplant mADSCs within ~4 weeks in the ischemic hind limb. Selectively targeting mTOR complex-1 (mTORC1) using low-dose rapamycin treatment with mADSCs attenuated proinflammatory cytokines (interleukin [IL]-1? and tumor necrosis factor-alpha [TNF-?]) expression and neutrophil/macrophage infiltration, which overtly promoted mADSCs viability and antiapoptotic/proangiogenic efficacy in vivo. However, targeting dual mTORC1/mTORC2 using PP242 or high-dose rapamycin caused IL-1?/TNF-? upregulation and anti-inflammatory IL-10, IL-6, and vascular endothelial growth factor/vascular endothelial growth factor receptor 2 downregulation, undermining the survival and antiapoptotic/proangiogenic action of mADSCs in vivo. Furthermore, low-dose rapamycin abrogated TNF-? secretion by mADSCs and rescued the cells from hypoxia/reoxygenation-induced death in vitro, while PP242 or high-dose rapamycin exerted proinflammatory effects and promoted cell death. In conclusion, mTORC1 and mTORC2 may differentially regulate inflammation and affect transplanted mADSCs functional survival in ischemic hind limb. These findings uncover that mTOR may evolve into a promising candidate for mechanism-driven approaches to facilitate the translation of cell-based PAD therapy.
Related JoVE Video
VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle.
Nanoscale
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
Herein we report the design and synthesis of multifunctional VEGF-loaded IR800-conjugated graphene oxide (GO-IR800-VEGF) for multi-modality imaging-monitored therapeutic angiogenesis of ischemic muscle. The as-prepared GO-IR800-VEGF positively targets VEGF receptors, maintains an elevated level of VEGF in ischemic tissues for a prolonged time, and finally leads to remarkable therapeutic angiogenesis of ischemic muscle. Although more efforts are required to further understand the in vivo behaviors and the long-term toxicology of GO, our work demonstrates the success of using GO for efficient VEGF delivery in vivo by intravenous administration and suggests the great promise of using graphene oxide in theranostic applications for treating ischemic disease.
Related JoVE Video
[Correlation between tumor cell proliferation and prognosis of primary cutaneous malignant melanoma in 127 patients].
Zhonghua Bing Li Xue Za Zhi
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
To investigate the correlations among Ki-67 expression, mitosis and other clinicopathological parameters of primary cutaneous malignant melanoma, and search for prognostic factors of malignant melanoma.
Related JoVE Video
Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemia-reperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor.
Cardiovasc. Res.
PUBLISHED: 06-13-2013
Show Abstract
Hide Abstract
Apelin, an endogenous cytokine, has a number of biological effects on the cardiovascular system, including a cardioprotective effect and calcium modulation. Because the intracellular calcium abnormality is considered to play an important role in cardiac dysfunction induced by ischaemia-reperfusion (I/R), the aim of this study was to examine the effects of apelin-13 on I/R-induced changes in cardiac performance and sarcoplasmic reticulum (SR) function.
Related JoVE Video
The transcriptomic architecture of mouse Sertoli cell clone embryos reveals temporal–spatial-specific reprogramming.
Reproduction
PUBLISHED: 04-13-2013
Show Abstract
Hide Abstract
Somatic cell nuclear transfer, a technique used to generate clone embryos by transferring the nucleus of a somatic cell into an enucleated oocyte, is an excellent approach to study the reprogramming of the nuclei of differentiated cells. Here, we conducted a transcriptomic study by performing microarray analysis on single Sertoli cell nuclear transfer (SeCNT) embryos throughout preimplantation development. The extensive data collected from the oocyte to the blastocyst stage helped to identify specific genes that were incorrectly reprogrammed at each stage, thereby providing a novel perspective for understanding reprogramming progression in SeCNT embryos.This attempt provided an opportunity to discuss the possibility that ectopic gene expression could be involved in the developmental failure of SeCNT embryos. Network analysis at each stage suggested that in total, 127 networks were involved in developmental and functional disorders in SeCNT embryos. Furthermore, chromosome mapping using our time-lapse expression data highlighted temporal–spatial changes of the abnormal expression, showing the characteristic distribution of the genes on each chromosome.Thus, the present study revealed that the preimplantation development of SeCNT embryos appears normal; however, the progression of incorrect reprogramming is concealed throughout development.
Related JoVE Video
?-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity.
Antiviral Res.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that replicates by reverse transcription. It chronically infects >350 million people and kills about 1 million patients annually. Therapy primarily employs nucleos(t)ide analogs that suppress viral DNA synthesis by the viral reverse transcriptase very well but that rarely cure the infection, so additional therapies are needed. Reverse transcription requires the viral ribonuclease H (RNAseH) to destroy the viral RNA after it has been copied into DNA. We recently produced active recombinant HBV RNAseH and demonstrated that Human Immunodeficiency Virus (HIV) RNAseH antagonists could inhibit the HBV enzyme at a high frequency. Here, we extended these results to ?-thujaplicinol, a hydroxylated tropolone which inhibits the HIV RNAseH. ?-Thujaplicinol inhibited RNAseHs from HBV genotype D and H in biochemical assays with IC?? values of 5.9±0.7 and 2.3±1.7 ?M, respectively. It blocked replication of HBV genotypes A and D in culture by inhibiting the RNAseH activity with an estimated EC?? of ?5 ?M and a CC?? of 10.1±1. 7 ?M. Activity of ?-thujaplicinol against RNAseH sequences from multiple HBV genotypes implies that if chemical derivatives of ?-thujaplicinol with improved efficacy and reduced toxicity can be identified, they would have promise as anti-HBV agents.
Related JoVE Video
Long-term outcome of laparoscopic-assisted right-hemicolectomy with D3 lymphadenectomy versus open surgery for colon carcinoma.
Surg. Today
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
To investigate the applicability, safety, short-term and long-term outcomes of laparoscopic surgery in the treatment of right-sided colon carcinomas with D3 lymphadenectomy.
Related JoVE Video
NDRG2 is involved in anti-apoptosis induced by electroacupuncture pretreatment after focal cerebral ischemia in rats.
Neurol. Res.
PUBLISHED: 04-02-2013
Show Abstract
Hide Abstract
We first reported that electroacupuncture (EA) pretreatment at the Baihui acupoint (GV20) induces ischemic tolerance. Our recent study demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) expression was up-regulated following transient focal cerebral ischemia. Therefore, we investigated whether NDRG2 was involved in the ischemic tolerance induced by EA pretreatment in rats.
Related JoVE Video
New insights for the risk of bisphenol A: inhibition of UDP-glucuronosyltransferases (UGTs).
Chemosphere
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
Bisphenol A (BPA), the important endocrine-disrupting chemical (EDC), has been reported to be able to induce various toxicity. The present study aims to understand the toxicity behavior of bisphenol A through evaluating the inhibition profile of bisphenol A towards UDP-glucuronosyltransferase (UGT) isoforms. In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as probe reaction for all the tested UGT isoforms. The results showed that bisphenol A exerted stronger inhibition towards UGT2B isoforms than UGT1A isoforms. Furthermore, the inhibition kinetic type and parameters (K(i)) were determined for the inhibition of bisphenol A towards UGT2B4, 2B7, 2B15, and 2B17. Bisphenol A exhibited the competitive inhibition towards UGT2B4, and noncompetitive inhibition towards UGT2B7, 2B15 and 2B17. The inhibition kinetic parameters (K(i)) were calculated to be 1.1, 32.6, 5.6, and 19.9 ?M for UGT2B4, 2B7, 2B15 and 2B17, respectively. In combination with the in vivo concentration of bisphenol A, the elevation of exposure dose was predicted to increase by 29.1%, 1%, 5.7%, and 1.6% for UGT2B4, 2B7, 2B15, and 2B17, indicating the high influence of bisphenol A towards the in vivo UGT2B isofroms-mediated metabolism of xenobiotics and endogenous substances. All these data provide the supporting information for deeper understanding of toxicology of bisphenol A.
Related JoVE Video
Intramyocardial autologous cell engraftment in patients with ischaemic heart failure: a meta-analysis of randomised controlled trials.
Heart Lung Circ
PUBLISHED: 03-30-2013
Show Abstract
Hide Abstract
Intramyocardial cellular delivery provides a promising therapeutic strategy for ischaemic cardiac dysfunction. However, individual studies have reported controversial results.
Related JoVE Video
Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics.
Mol. Pharm.
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p < 0.01). In hydroxyethyl piperazine ethanesulfonic acid buffer (HEPES) of pH 7.4, except for 7c, 9a, and 9d, P(eff) of the other prodrugs containing 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (1.7-fold) exhibited significantly higher values than that of OA (p < 0.01). In inhibition studies with glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1), P(eff) of 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (2.3-fold) had significantly reduced values (p < 0.01). Compared to the apparent permeability coefficient (P(app)) of OA with Caco-2 cell monolayer, significant enhancement of the P(app) of 7a (5.27-fold), 9b (3.31-fold), 9a (2.26-fold), 7b (2.10-fold), 7c (2.03-fold), 9c (1.87-fold), and 9d (1.39-fold) was also observed (p < 0.01). Inhibition studies with Gly-Sar (1 mM) showed that P(app) of 7a, 9b, and 9c significantly reduced by 1.3-fold, 1.6-fold, and 1.4-fold (p < 0.01), respectively. These results may be attributed to PepT1-mediated transport and their differential affinity toward PepT1. According to the permeability and affinity, 7a and 9b were selected in the pharmacokinetic studies in rats. Compared with group OA, C(max) for group 7a and 9b was enhanced to 3.04-fold (p < 0.01) and 2.62-fold (p < 0.01), respectively. AUC(0?24) was improved to 3.55-fold (p < 0.01) and 3.39-fold (p < 0.01), respectively. Compared to the ethylene glycol-linked amino acid diester prodrugs of OA in our previous work, results from this study revealed that part of the propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.
Related JoVE Video
NDRG2: a newly identified mediator of insulin cardioprotection against myocardial ischemia-reperfusion injury.
Basic Res. Cardiol.
PUBLISHED: 02-10-2013
Show Abstract
Hide Abstract
The N-myc downstream-regulated gene 2 (NDRG2) is involved in cell apoptosis and survival. Although reported to be highly expressed in the cardiac tissue, the biological function of NDRG2 in the heart remains to be established. Insulin exerts protective effects against myocardial ischemia/reperfusion (I/R) injury through the PI3K/Akt pathway. Here, we examined the changes in phosphorylation of NDRG2, a novel substrate and phosphoprotein of Akt, in insulin-induced protection against myocardial I/R. Rat hearts were subjected to 30 min regional ischemia followed by reperfusion with or without insulin at the onset of reperfusion. Reperfusion with insulin inhibited myocardial apoptosis and reduced infarct size, as well as significantly up-regulated myocardial Akt and NDRG2 phosphorylation levels compared with the I/R group. These effects of insulin were blocked by pretreatment with the PI3K inhibitor wortmannin or Akt inhibitor. To further ascertain the role of NDRG2 in insulin-induced cardioprotection, cardiomyocytes were transduced with a lentivirus encoding shRNA targeting NDRG2 (loss-of-function), which rendered the cells more susceptible to I/R injury and significantly blunted the anti-apoptotic effect of insulin. Moreover, the NDRG2 shRNA lentivirus was tested in vivo, and NDRG2 knockdown aggravated myocardial I/R injury and attenuated the insulin-mediated cardioprotection against I/R injury. Taken together, these results suggest a novel role of PI3K/Akt/NDRG2 signaling in the cardioprotective effect of insulin.
Related JoVE Video
One-stage laparoscopic resection for a large gastric gastrointestinal stromal tumor and synchronous liver metastases following preoperative imatinib therapy: A case report.
Oncol Lett
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Laparoscopic partial gastrectomy without lymph node dissection has been accepted worldwide for the treatment of small gastric gastrointestinal stromal tumors (GISTs). However, the role of laparoscopic surgery in the treatment of large gastric GISTs remains under debate due to the risk of tumor spillage or rupture of the tumor capsule leading to peritoneal seeding. To the best of our knowledge, one-stage laparoscopic resection for a large gastric GIST and synchronous liver metastases following preoperative imatinib therapy has not been previously reported. Here, we present our initial experience of this method of treatment.
Related JoVE Video
Potent killing of HBV-related hepatocellular carcinoma by a chimeric protein of anti-HBsAg single-chain antibody and truncated Bid.
Biomaterials
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Targeted therapy is needed for hepatitis B virus (HBV)-mediated hepatocellular carcinoma (HCC) which shows overexpression of HBV surface antigen (HBsAg). We previously developed scFv15, a human single-chain antibody against HBsAg. Here we tested the strategic feasibility of scFv15-mediated delivery of apoptotic effectors for HBsAg-targeted HCC therapy and application of HA2 motif of influenza hemagglutinin to enhance endosome escape and antitumor effect. A class of HBsAg-targeted immunoproapoptotic molecule was generated by sequentially fusing scFv15, the furin-cleavable motif from diphtheria toxin (Fdt), HA2 and a truncated apoptotic protein Bid (tBid). The resulting scFv15-Fdt-HA2-tBid was prokaryotically expressed and functionally characterized for HBsAg-binding capacity, endosome escape activity and antitumor effect as compared with scFv15-Fdt-tBid. Both scFv15-Fdt-HA2-tBid and scFv15-Fdt-tBid retained affinity and specificity for HBsAg, and bound and selectively killed HBsAg-positive HCC cells via apoptosis. Notably, the IC50 of scFv15-Fdt-HA2-tBid in HBsAg-positive PLC/PRF/5 cells was 10 times lower than that of scFv15-Fdt-tBid. In vivo imaging of antitumor activity demonstrated 95% growth inhibition of orthotopic HCC by scFv15-Fdt-HA2-tBid compared with 75% suppression by scFv15-Fdt-tBid. This study represents an extended application of the immunoproapoptotic strategy in the treatment of HBsAg-positive HCC and shows significant potential of HA2 as a functional enhancer for endosome-encapsulated antibody-conjugates.
Related JoVE Video
?-Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3K/Akt/Nrf2 pathway.
PLoS ONE
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
The present study investigates the effects and mechanisms of ?-Lipoic acid (LA) on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in rat hearts subjected to in vivo myocardial ischemia/reperfusion (MI/R) injury.
Related JoVE Video
Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism.
Diabetes
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Impaired cardiac microvascular function contributes to cardiovascular complications in diabetes. Glucagon-like peptide-1 (GLP-1) exhibits potential cardioprotective properties in addition to its glucose-lowering effect. This study was designed to evaluate the impact of GLP-1 on cardiac microvascular injury in diabetes and the underlying mechanism involved. Experimental diabetes was induced using streptozotocin in rats. Cohorts of diabetic rats received a 12-week treatment of vildagliptin (dipeptidyl peptidase-4 inhibitor) or exenatide (GLP-1 analog). Experimental diabetes attenuated cardiac function, glucose uptake, and microvascular barrier function, which were significantly improved by vildagliptin or exenatide treatment. Cardiac microvascular endothelial cells (CMECs) were isolated and cultured in normal or high glucose medium with or without GLP-1. GLP-1 decreased high-glucose-induced reactive oxygen species production and apoptotic index, as well as the levels of NADPH oxidase such as p47(phox) and gp91(phox). Furthermore, cAMP/PKA (cAMP-dependent protein kinase activity) was increased and Rho-expression was decreased in high-glucose-induced CMECs after GLP-1 treatment. In conclusion, GLP-1 could protect the cardiac microvessels against oxidative stress, apoptosis, and the resultant microvascular barrier dysfunction in diabetes, which may contribute to the improvement of cardiac function and cardiac glucose metabolism in diabetes. The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-mediated pathway.
Related JoVE Video
Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways.
Basic Res. Cardiol.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
The poor viability of transplanted stem cells hampers their therapeutic efficacy for treatment of myocardial infarction. The aim of this study was to investigate whether rosuvastatin improved survival of adipose-derived mesenchymal stem cells (AD-MSCs) after transplantation into infarcted hearts. AD-MSCs isolated from Tg(Fluc-egfp) mice which constitutively express both firefly luciferase (Fluc) and enhanced green fluorescent protein were transplanted into infarcted hearts with or without rosuvastatin administration. Longitudinal in vivo bioluminescence imaging and histological staining revealed that rosuvastatin enhanced the survival of engrafted AD-MSCs. Furthermore, combined therapy of AD-MSC and rosuvastatin reduced fibrosis, decreased cardiomyocyte apoptosis, and preserved heart function. AD-MSCs were then subjected to hypoxia and serum deprivation injury in vitro to mimic the ischemic environment. Rosuvastatin (10(-6) mmol/L) enhanced the viability and paracrine effect of AD-MSCs, and decreased their apoptotic rate. Western blotting revealed that rosuvastatin supplementation increased Akt and ERK phosphorylation, which resulted in FoxO3a phosphorylation and nuclear export. In addition, rosuvastatin administration decreased the pro-apoptotic proteins Bim and Bax, and increased the anti-apoptotic proteins Bcl-xL and Bcl-2. Furthermore, these effects were abolished by PI3K inhibitor LY294002 and MEK1/2 inhibitor U0126. This study demonstrates that rosuvastatin may improve the survival of engrafted AD-MSCs at least in part through the PI3K/Akt and MEK/ERK1/2 signaling pathways. Combination therapy with rosuvastatin and AD-MSCs has a synergetic effect on improving myocardial function after infarction.
Related JoVE Video
Comparison of Inhibition Capability of Scutellarein and Scutellarin Towards Important Liver UDP-Glucuronosyltransferase (UGT) Isoforms.
Phytother Res
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand-Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP-glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki ) were determined for the scutellareins inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9??M for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro-in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright © 2013 John Wiley & Sons, Ltd.
Related JoVE Video
The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes.
PLoS Pathog.
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 µM, the best compounds had low micromolar IC(50) values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 µM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development.
Related JoVE Video
Pathophysiology and therapeutics of cardiovascular disease in metabolic syndrome.
Curr. Pharm. Des.
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
The metabolic syndrome (MetS) is characterized by a cluster of cardiovascular risk factors, including central obesity, hyperglycemia, dyslipidemia and hypertension, which are highly associated with increased morbidity and mortality of cardiovascular diseases (CVD). The association between these metabolic disorders and the development of CVD is believed to be multifactorial, where insulin resistance, oxidative stress, low-grade inflammation and vascular maladaptation act as the major contributors. Therefore, multipronged therapeutic strategies should be taken for the management of patients with MetS. Lifestyle changes including weight control, healthy heart diet and regular exercises have been proposed as first line treatment to decrease CVD risks in MetS individuals. In addition, improving insulin resistance and glucose metabolism, controlling blood pressure as well as modulating dyslipidemia can also delay or reverse the progression of CVD in MetS. This review will first address the complicated interactions between MetS and CVD¸ followed by discussion about the optimal strategy in the prevention and treatment of CVD in MetS patients and the updated results from newly released clinical trials.
Related JoVE Video
Structure-inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs).
Toxicol. Appl. Pharmacol.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
The wide utilization of ginseng provides the high risk of herb-drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb-drug interaction (HDI). Compared with the deep studies on the ginsenosides inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb-drug interaction induced by this kind of inhibition, the ginsenoside Rg(3) was selected as an example, and the inhibition kinetic type and parameters (K(i)) were determined. Rg(3) competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K(i) values) were calculated to be 22.6, 7.9, 1.9, and 2.0?M for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg(3) (400ng/ml (0.5?M)) after intramuscular injection of 60mg Rg(3), the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides inhibition towards UGT isoforms might be an important reason for ginseng-drug interaction.
Related JoVE Video
Cryptotanshinone and dihydrotanshinone I exhibit strong inhibition towards human liver microsome (HLM)-catalyzed propofol glucuronidation.
Fitoterapia
PUBLISHED: 01-06-2013
Show Abstract
Hide Abstract
Danshen is one of the most famous herbs in the world, and more and more danshen-prescribed drugs interactions have been reported in recent years. Evaluation of inhibition potential of danshens major ingredients towards UDP-glucuronosyltransferases (UGTs) will be helpful for understanding detailed mechanisms for danshen-drugs interaction. Therefore, the aim of the present study is to investigate the inhibitory situation of cryptotanshinone and dihydrotanshinone I towards UGT enzyme-catalyzed propofol glucuronidation. In vitro the human liver microsome (HLM) incubation system was used, and the results showed that cryptotanshinone and dihydrotanshinone I exhibited dose-dependent inhibition towards HLM-catalyzed propofol glucuronidation. Dixon plot and Lineweaver-Burk plot showed that the inhibition type was best fit to competitive inhibition type for both cryptotanshinone and dihydrotanshinone I. The second plot using the slopes from the Lineweaver-Burk plot versus the concentrations of cryptotanshinone or dihydrotanshinone I was employed to calculate the inhibition parameters (Ki) to be 0.4 and 1.7?M, respectively. Using the reported maximum plasma concentration (Cmax), the altered in vivo exposure of propofol increased by 10% and 8.2% for the co-administration of dihydrotanshinone I and cryptotanshinone, respectively. All these results indicated the possible danshen-propofol interaction due to the inhibition of dihydrotanshinone I and cryptotanshinone towards the glucuronidation reaction of propofol.
Related JoVE Video
Production of fertile offspring from oocytes grown in vitro by nuclear transfer in cattle.
Biol. Reprod.
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Because of recent advancements in reproductive technology, oocytes have attained an increasingly enriched value as a unique cell population in the production of offspring. The growing oocytes in the ovary are an immediate potential source that serve this need; however, complete oocyte growth before use is crucial. Our research objective was to create in vitro-grown (IVG) oocytes that would have the ability to perform specialized activities, including nuclear reprogramming, as an alternative to in vivo-grown oocytes. Bovine oocyte-granulosa cell complexes with a mean oocyte diameter of approximately 100 ?m were cultured on Millicell membrane inserts, with culture medium supplemented with 4% polyvinylpyrrolidone (molecular weight, 360,000), 20 ng/ml androstenedione, 2 mM hypoxanthine, and 5 ng/ml bone morphogenetic protein 7. Oocyte viability after the 14-day culture period was 95%, and there was a 71% increase in oocyte volume. Upon induction of oocyte maturation, 61% of the IVG oocytes extruded a polar body. Eighty-four percent of the reconstructed IVG oocytes that used cumulus cells as donor cells underwent cleavage, and half of them became blastocysts. DNA methylation analyses of the satellite I and II regions of the blastocysts revealed a similar highly methylated status in the cloned embryos derived from in vivo-grown and IVG oocytes. Finally, one of the nine embryos reconstructed from the IVG oocytes developed into a living calf following embryo transfer. Fertility of the offspring was confirmed. In conclusion, the potential of a proportion of the IVG oocytes was comparable to that of in vivo-grown oocytes.
Related JoVE Video
Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Whether differentiation of induced pluripotent stem cells (iPSCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection, is unclear. Here, we dynamically demonstrated the immunogenicity and rejection of iPSCs in ischemic myocardium using bioluminescent imaging (BLI). Murine iPSCs were transduced with a tri-fusion (TF) reporter gene consisting of firefly luciferase-red fluorescent protein-truncated thymidine kinase (fluc-mrfp-tTK). Ascorbic acid (Vc) were used to induce iPSCs to differentiate into cardiomyocytes (CM). iPSCs and iPS-CMs were intramyocardially injected into immunocompetent or immunosuppressed allogenic murine with myocardial infarction. BLI was performed to track transplanted cells. Immune cell infiltration was evaluated by immunohistochemistry. Syngeneic iPSCs were also injected and evaluated. The results demonstrated that undifferentiated iPSCs survived and proliferated in allogenic immunocompetent recipients early post-transplantation, accompanying with mild immune cell infiltration. With in vivo differentiation, a progressive immune cell infiltration could be detected. While transplantation of allogenic iPSC-CMs were observed an acute rejection from receipts. In immune-suppressed recipients, the proliferation of iPSCs could be maintained and intramyocardial teratomas were formed. Transplantation of syngeneic iPSCs and iPSC-CMs were also observed progressive immune cell infiltration. This study demonstrated that iPSC immunogenicity increases with in vivo differentiation, which will increase their chance for rejection in iPSC-based therapy.
Related JoVE Video
Noninvasive visualization of microRNA-16 in the chemoresistance of gastric cancer using a dual reporter gene imaging system.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
MicroRNAs (miRNAs) have been implicated to play a central role in the development of drug resistance in a variety of malignancies. However, many studies were conducted at the in vitro level and could not provide the in vivo information on the functions of miRNAs in the anticancer drug resistance. Here, we introduced a dual reporter gene imaging system for noninvasively monitoring the kinetic expression of miRNA-16 during chemoresistance in gastric cancer both in vitro and in vivo. Human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) genes were linked to form hNIS/Fluc double fusion reporter gene and then generate human gastric cancer cell line NF-3xmir16 and its multidrug resistance cell line NF-3xmir16/VCR. Radioiodide uptake and Fluc luminescence signals in vitro correlated well with viable cell numbers. The luciferase activities and radioiodide uptake in NF-3xmir16 cells were remarkably repressed by exogenous or endogenous miRNA-16. The NF-3xmir16/VCR cells showed a significant increase of (131)I uptake and luminescence intensity compared to NF-3xmir16 cells. The radioactivity from in vivo (99m)Tc-pertechnetate imaging and the intensity from bioluminescence imaging were also increased in NF-3xmir16/VCR compared with that in NF-3xmir16 tumor xenografts. Furthermore, using this reporter gene system, we found that etoposide (VP-16) and 5-fluorouracil (5-FU) activated miRNA-16 expression in vitro and in vivo, and the upregulation of miRNA-16 is p38MAPK dependent but NF-?B independent. This dual imaging reporter gene may be served as a novel tool for in vivo imaging of microRNAs in the chemoresistance of cancers, as well as for early detection and diagnosis in clinic.
Related JoVE Video
[N-(3-Eth-oxy-2-oxidobenzyl-idene-?O)-4-methyl-benzohydrazidato-?O,N](methano-lato-?O)oxidovanadium(V).
Acta Crystallogr Sect E Struct Rep Online
PUBLISHED: 10-08-2011
Show Abstract
Hide Abstract
The title oxidovanadium(V) complex, [V(C(17)H(16)N(2)O(3))(CH(3)O)O], was obtained by the reaction of 3-eth-oxy-2-hy-droxy-benzaldehyde, 4-methyl-benzohydrazide and vanadyl sulfate in methanol. The V(V) atom is coordinated by the O,N,O-tridentate Schiff base ligand, one methano-late O atom and one oxide O atom, forming a distorted VO(4)N square-pyramidal coordination geometry. The oxide O atom lies at the apex of the square pyramid and the N atom of the ligand and the methano-late O atom are trans. The dihedral angle between the benzene rings of the ligand is 1.8?(3)°.
Related JoVE Video
Ontology-based knowledge management for personalized adverse drug events detection.
Stud Health Technol Inform
PUBLISHED: 09-07-2011
Show Abstract
Hide Abstract
Since Adverse Drug Event (ADE) has become a leading cause of death around the world, there arises high demand for helping clinicians or patients to identify possible hazards from drug effects. Motivated by this, we present a personalized ADE detection system, with the focus on applying ontology-based knowledge management techniques to enhance ADE detection services. The development of electronic health records makes it possible to automate the personalized ADE detection, i.e., to take patient clinical conditions into account during ADE detection. Specifically, we define the ADE ontology to uniformly manage the ADE knowledge from multiple sources. We take advantage of the rich semantics from the terminology SNOMED-CT and apply it to ADE detection via the semantic query and reasoning.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.