JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil?
PLoS ONE
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
In this study, the evaluation of soil characteristics was coupled with a pyrosequencing analysis of the V2-V3 16S rRNA gene region in order to investigate the bacterial community structure and diversity in the A horizon of a natural saline soil located in Sicily (Italy). The main aim of the research was to assess the organisation and diversity of microbial taxa using a spatial scale that revealed physical and chemical heterogeneity of the habitat under investigation. The results provided information on the type of distribution of different bacterial groups as a function of spatial gradients of soil salinity and pH. The analysis of bacterial 16S rRNA showed differences in bacterial composition and diversity due to a variable salt concentration in the soil. The bacterial community showed a statistically significant spatial variability. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient. It emerged therefore that a patchy saline soil can not contain just a single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters. Sequences have been deposited to the SRA database and can be accessed on ID Project PRJNA241061.
Related JoVE Video
A Combined Approach to Assess the Microbial Contamination of the Archimedes Palimpsest.
Microb. Ecol.
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
A combined approach, using molecular and microscopic techniques, was used to identify the microbiota associated with the Archimedes Palimpsest, an unusual parchment manuscript. SEM analyses revealed the microbial damage to the collagen fibers and the presence of characteristic cell chains typical of filamentous bacteria and fungal spores. Molecular analysis confirmed a homogeneous bacterial community colonizing the manuscript. The phyla Proteobacteria and Actinobacteria were associated with this ancient parchment; the sequences were most related to uncultured clones detected in the human skin microbiome and in ephitelium, and to cultivated species of the genera Acinetobacter and Nocardiopsis. Nevertheless, a great variation was observed among the different sampled areas indicating fungal diversity. Blumeria spp. dominated in the healthy areas of the parchment while degraded areas showed disparate fungal communities, with dominant members of the genera Mucor and Cladosporium. In addition, the quantification of the ?-actin gene by real-time PCR analyses (qPCR) revealed a higher fungal abundance on degraded areas than on the healthy ones.
Related JoVE Video
Unmasking the measles-like parchment discoloration: molecular and microanalytical approach.
Environ. Microbiol.
PUBLISHED: 02-20-2014
Show Abstract
Hide Abstract
Many ancient parchments are defaced by red or purple maculae associated with localized destruction of collagen fibres. Although the main characteristics of this damage were present in most of the manuscripts analysed by many authors, no common microbial or fungal denominator has been found so far, and little or no correspondence between the microbial or fungal species isolated from materials could be addressed. In this study, culture-independent molecular methods and scanning electron microscopy (SEM) were used to identify fungal and bacterial communities on parchments affected by the purple stains. Protocols for c extraction and nucleic-acid-based strategies were selected for assays examining the community structure of fungi and bacteria on biodeteriorated parchment. Both SEM and molecular analysis detected the presence of bacterial and fungal cells in the damaged areas. Halophilic, halotolerant proteolytic bacterial species were selected by the saline environment provided by the parchment samples. As common microbial denominators, members of the Actinobacteria, mainly Saccharopolyspora spp. and species of Aspergillus, were detected in all investigated cases. It is proposed that a relationship exists between the phenomenon of purple spots on ancient parchments and that of the 'red heat' phenomenon, known to be present in some products manufactured with marine salt.
Related JoVE Video
Monitoring the effects of different conservation treatments on paper-infecting fungi.
Int. Biodeterior. Biodegradation
PUBLISHED: 10-05-2013
Show Abstract
Hide Abstract
Fungi are among the most degradative organisms inducing biodeterioration of paper-based items of cultural heritage. Appropriate conservation measures and restoration treatments to deal with fungal infections include mechanical, chemical, and biological methods, which entail effects on the paper itself and health hazards for humans. Three different conservation treatments, namely freeze-drying, gamma rays, and ethylene oxide fumigation, were compared and monitored to assess their short- (one month, T1) and long-term (one year, T2) effectiveness to inhibit fungal growth. After the inoculation with fungi possessing cellulose hydrolysis ability - Chaetomium globosum, Trichoderma viride, and Cladosporium cladosporioides - as single strains or as a mixture, different quality paper samples were treated and screened for fungal viability by culture-dependent and -independent techniques. Results derived from both strategies were contradictory. Both gamma irradiation and EtO fumigation showed full efficacy as disinfecting agents when evaluated with cultivation techniques. However, when using molecular analyses, the application of gamma rays showed a short-term reduction in DNA recovery and DNA fragmentation; the latter phenomenon was also observed in a minor degree in samples treated with freeze-drying. When RNA was used as an indicator of long-term fungal viability, differences in the RNA recovery from samples treated with freeze-drying or gamma rays could be observed in samples inoculated with the mixed culture. Only the treatment with ethylene oxide proved negative for both DNA and RNA recovery. Therefore, DNA fragmentation after an ethylene oxide treatment can hamper future paleogenetic and archaeological molecular studies on the objects.
Related JoVE Video
Genotypic and phenotypic versatility of Aspergillus flavus during maize exploitation.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Aspergillus flavus is a cosmopolitan fungus able to respond to external stimuli and to shift both its trophic behaviour and the production of secondary metabolites, including that of the carcinogen aflatoxin (AF). To better understand the adaptability of this fungus, we examined genetic and phenotypic responses within the fungus when grown under four conditions that mimic different ecological niches ranging from saprophytic growth to parasitism. Global transcription changes were observed in both primary and secondary metabolism in response to these conditions, particularly in secondary metabolism where transcription of nearly half of the predicted secondary metabolite clusters changed in response to the trophic states of the fungus. The greatest transcriptional change was found between saprophytic and parasitic growth, which resulted in expression changes in over 800 genes in A. flavus. The fungus also responded to growth conditions, putatively by adaptive changes in conidia, resulting in differences in their ability to utilize carbon sources. We also examined tolerance of A. flavus to oxidative stress and found that growth and secondary metabolism were altered in a superoxide dismutase (sod) mutant and an alkyl-hydroperoxide reductase (ahp) mutant of A. flavus. Data presented in this study show a multifaceted response of A. flavus to its environment and suggest that oxidative stress and secondary metabolism are important in the ecology of this fungus, notably in its interaction with host plant and in relation to changes in its lifestyle (i.e. saprobic to pathogenic).
Related JoVE Video
The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment.
Environ. Microbiol.
PUBLISHED: 10-18-2011
Show Abstract
Hide Abstract
Hyphomycetous fungi - so called mould- are the most important agents of biodeterioration in museums, museums storage rooms, in libraries, collections and restoration studios. Fungi are able to live at low water activities, they are perfectly adapted to indoor environments and thrive in microclimatic niches caused by condensation, lack of ventilation or water retention by hygroscopic materials. Fungi spoil valuable pieces of art aesthetically, mechanically, chemically and by degradation of organic components. Historical material made of paper and oil paintings with high amounts of organic binders are especially susceptible to fungal deterioration. In order to prevent fungal contamination or to treat already contaminated objects an integrated approach including climate control, material-specific cleaning and application of carefully selected biocides is necessary.
Related JoVE Video
The Indian drawings of the poet Cesare Pascarella: non-destructive analyses and conservation treatments.
Anal Bioanal Chem
PUBLISHED: 05-13-2011
Show Abstract
Hide Abstract
The Italian dialect poet Cesare Pascarella travelled all around the world, noting down in notebooks his keen and caustic observations, and drawing sketches that are a visual reportage of his journeys. The sketches were mounted as a random collage over acidic cardboards that were exposed to direct sunlight in his studio. Their poor state of conservation is related to the use of modern paper: chemical instability of raw materials caused acidification and strong oxidation of the support, with intense yellowing of the surfaces and brittleness of the paper. To ensure future preservation of the drawings, chemical stabilisation with simultaneous alcoholic treatment by deacidification (calcium propionate) and reduction (borane tert-butylamine complex) appeared necessary. To verify its applicability, it was indispensible to characterise the support and identify the nature of all the graphic media. The use of Raman, Infrared, X-ray fluorescence spectroscopies and scanning electron microscopy coupled with X-ray microanalysis allowed us to clear the problems related to the different penetration depth of each analytical technique and the different responses of pigments/dyes to each spectroscopy. The palette, how it varied along the journeys, the different supports used and preparations were completely identified showing a choice of colours compatible with the reduction treatment.
Related JoVE Video
Molecular and microscopical investigation of the microflora inhabiting a deteriorated Italian manuscript dated from the thirteenth century.
Microb. Ecol.
PUBLISHED: 03-01-2010
Show Abstract
Hide Abstract
This case study shows the application of nontraditional diagnostic methods to investigate the microbial consortia inhabiting an ancient manuscript. The manuscript was suspected to be biologically deteriorated and SEM observations showed the presence of fungal spores attached to fibers, but classic culturing methods did not succeed in isolating microbial contaminants. Therefore, molecular methods, including PCR, denaturing gradient gel electrophoresis (DGGE), and clone libraries, were used as a sensitive alternative to conventional cultivation techniques. DGGE fingerprints revealed a high biodiversity of both bacteria and fungi inhabiting the manuscript. DNA sequence analysis confirmed the existence of fungi and bacteria in manuscript samples. A number of fungal clones identified on the manuscript showed similarity to fungal species inhabiting dry or saline environments, suggesting that the manuscript environment selects for osmophilic or xerophilic fungal species. Most of the bacterial sequences retrieved from the manuscript belong to phylotypes with cellulolytic activities.
Related JoVE Video
Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen.
Environ. Microbiol.
Show Abstract
Hide Abstract
Fungal biodeterioration of ivory was investigated with in vitro inoculation of samples obtained from boar and walrus tusks with the fungi Aspergillus niger and Serpula himantioides, species of known geoactive abilities. A combination of light and scanning electron microscopy together with associated analytical techniques was used to characterize fungal interactions with the ivory, including changes in ivory composition, dissolution and tunnelling, and the formation of new biominerals. The research was aimed at providing further understanding of the potential roles of fungi in the colonization and deterioration of ivory in terrestrial environments, but also contributes to our knowledge regarding the possible origins of the surface damage observed on early medieval sculptures made largely from walrus tusks, referred to as the Lewis hoard of gaming pieces, that were presumably produced for playing chess. The experiments have shown that the possibility of damage to ivory being caused by fungi is realistic. Scanning electron microscopy revealed penetration of fungal hyphae within cracks in the walrus tusk that showed also widespread tunnelling by fungal hyphae as well as fungal footprints where the surface was etched as a consequence of mycelial colonization. Similar phenomena were observed with boar tusk ivory, while production of metabolites could lead to complete dissolution of the sample. Colonization of ivory and/or exposure to fungal activity lead to extensive secondary biomineral formation, and this was identified as calcium oxalate, mainly as the monohydrate, whewellite.
Related JoVE Video
How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus.
PLoS ONE
Show Abstract
Hide Abstract
In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids ?-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal ?-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal ?-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids ?-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.