JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
"Mirror EPC": Epilepsia partialis continua shifting sides after rolandic resection in dysplasia.
Neurology
PUBLISHED: 09-12-2014
Show Abstract
Hide Abstract
Epilepsia partialis continua (EPC) is a life-threatening condition often caused by focal cortical dysplasia (FCD). Resection of the motor cortex is contemplated in the hope that the trade-off between a severe motor deficit and complete seizure control justifies the procedure.
Related JoVE Video
Epileptic scalp ripples are associated with corticothalamic BOLD changes.
Epilepsia
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Interictal high frequency oscillations (HFOs) in the 40-200 Hz range have been identified in scalp electroencephalography (EEG) recordings of patients with focal epilepsy. HFOs usually co-occur with interictal epileptiform discharges (IEDs), and are specific and accurate markers for the epileptic focus, but the brain regions involved when HFOs are generated are unknown. We investigated this question with combined EEG-functional magnetic resonance imaging (fMRI), measuring the blood oxygenation level-dependent (BOLD) signal, and examined HFOs in the gamma (40-80 Hz) and ripple (80-200 Hz) bands.
Related JoVE Video
Hemodynamic response function (HRF) in epilepsy patients with hippocampal sclerosis and focal cortical dysplasia.
Brain Topogr
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
Simultaneous recording of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) has recently been applied for mapping the hemodynamic changes related to epileptic activity. The aim of this study is to compare the hemodynamic response function (HRF) to epileptic spikes in patients with focal cortical dysplasia (FCD) and those with hippocampal sclerosis (HS). In EEG-fMRI studies, the HRF represents the temporal evolution of blood oxygenation level-dependent signal changes. Several studies demonstrated that amplitude and latency of the HRF are variable in patients with epilepsy. However, the consistency of HRF parameters with underlying brain pathology is unknown. In this study, we examined 14 patients with FCD and 12 with unilateral HS selected from our EEG-fMRI database and compared the amplitude and latency of the HRF peak. We analyzed (1) HRFs in peak activation clusters, (2) HRFs in peak deactivation clusters, and (3) the maximum absolute responses within the EEG spike field, activation or deactivation. We found that the HRF peak amplitude in deactivation clusters was larger in the HS group than in the FCD when the deactivation occurred in default mode network (DMN) regions. This result suggests that spikes in patients with HS affect the DMN more strongly than those with FCD. However, if we focus on the maximum absolute t-value in the spike field, there is no significant difference between the two groups. The current study indicates that it is not necessary to use different HRF models for EEG-fMRI studies in patients with FCD and HS.
Related JoVE Video
Spatial correlation of hemodynamic changes related to interictal epileptic discharges with electric and magnetic source imaging.
Hum Brain Mapp
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Blood oxygenation level-dependent (BOLD) signal changes at the time of interictal epileptic discharges (IEDs) identify their associated vascular/hemodynamic responses. BOLD activations and deactivations can be found within the epileptogenic zone but also at a distance. Source imaging identifies electric (ESI) and magnetic (MSI) sources of IEDs, with the advantage of a higher temporal resolution. Therefore, the objective of our study was to evaluate the spatial concordance between ESI/MSI and BOLD responses for similar IEDs.
Related JoVE Video
Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology.
Brain
PUBLISHED: 10-30-2013
Show Abstract
Hide Abstract
Because seizures originate from different pathological substrates, the question arises of whether distinct or similar mechanisms underlie seizure generation across different pathologies. Better defining intracranial electroencephalographic morphological patterns at seizure-onset could improve the understanding of such mechanisms. To this end, we investigated intracranial electroencephalographic seizure-onset patterns associated with different epileptogenic lesions, and defined high-frequency oscillation correlates of each pattern. We analysed representative seizure types from 33 consecutive patients with drug-resistant focal epilepsy and a structural magnetic resonance imaging lesion (11 mesial temporal sclerosis, nine focal cortical dysplasia, six cortical atrophy, three periventricular nodular heterotopia, three polymicrogyria, and one tuberous sclerosis complex) who underwent depth-electrode electroencephalographic recordings (500 Hz filter, 2000 Hz sampling rate). Patients were included only if seizures arose from contacts located in lesional/peri-lesional tissue, and if clinical manifestations followed the electrographic onset. Seizure-onset patterns were defined independently by two reviewers blinded to clinical information, and consensus was reached after discussion. For each seizure, pre-ictal and ictal sections were selected for high-frequency oscillation analysis. Seven seizure-onset patterns were identified across the 53 seizures sampled: low-voltage fast activity (43%); low-frequency high-amplitude periodic spikes (21%); sharp activity at ?13 Hz (15%); spike-and-wave activity (9%); burst of high-amplitude polyspikes (6%); burst suppression (4%); and delta brush (4%). Each pattern occurred across several pathologies, except for periodic spikes, only observed with mesial temporal sclerosis, and delta brush, exclusive to focal cortical dysplasia. However, mesial temporal sclerosis was not always associated with periodic spikes nor focal cortical dysplasia with delta brush. Compared to other patterns, low-voltage fast activity was associated with a larger seizure-onset zone (P = 0.04). Four patterns, sharp activity at ?13 Hz, low-voltage fast activity, spike-and-wave activity and periodic spikes, were also found in regions of seizure spread, with periodic spikes only emerging from mesial temporal sclerosis. Each of the seven patterns was accompanied by a significant increase in high-frequency oscillations upon seizure-onset. Overall, our data indicate that: (i) biologically-distinct epileptogenic lesions share intracranial electroencephalographic seizure-onset patterns, suggesting that different pathological substrates can affect similarly networks or mechanisms underlying seizure generation; (ii) certain pathologies are associated with intracranial electroencephalographic signatures at seizure-onset, e.g. periodic spikes which may reflect mechanisms specific to mesial temporal sclerosis; (iii) some seizure-onset patterns, including periodic spikes, can also be found in regions of spread, which cautions against relying on the morphology of the initial discharge to define the epileptogenic zone; and (iv) high-frequency oscillations increase at seizure-onset, independently of the pattern.
Related JoVE Video
Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy.
Epilepsia
PUBLISHED: 09-25-2013
Show Abstract
Hide Abstract
Simultaneous electroencephalography/functional magnetic resonance imaging (EEG/fMRI) recording can noninvasively map in the whole brain the hemodynamic response following an interictal epileptic discharge. EEG/fMRI is gaining interest as a presurgical evaluation tool. This study aims to determine how hemodynamic responses related to epileptic activity can help predict surgical outcome in patients considered for epilepsy surgery.
Related JoVE Video
Are high frequency oscillations associated with altered network topology in partial epilepsy?
Neuroimage
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
Neurophysiological studies have reported functional network alterations in epilepsy, most consistently in the theta frequency band. Highly interconnected brain regions (so-called hubs) seem to be important in these epileptic networks. High frequency oscillations (HFOs) in intracranial EEG recordings are recently discovered biomarkers that can identify the epileptogenic area and are thought to result from altered neuronal interactions. We studied whether the epileptogenic zone (identified by HFOs and seizure onset zone) is associated with pathological hubs. Bilateral depth electrode recordings from the hippocampus and amygdala were available from twelve patients suspected of temporal lobe epilepsy. HFOs, classified as ripples (80-250 Hz) and fast ripples (250-500 Hz), and epileptiform spikes were marked for all patients in a five-minute epoch of slow-wave sleep. For each channel, we computed hub-measures from a period without epileptiform spikes and found that the epileptogenic zone was associated with a decreased hub-value in the theta frequency band. The amount of HFOs, especially fast ripples, was negatively correlated with the hub-value per channel. Results from post-hoc analyses of other frequency bands, particularly the broad- and gamma frequency band, pointed in the same direction as the results for the theta frequency band. These findings suggest a pathological functional isolation of the epileptogenic zone in the interictal state.
Related JoVE Video
Outcome of pediatric epilepsies in adulthood.
Handb Clin Neurol
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
A good understanding of the long-term outcome of epileptic disorders that have begun in infancy or childhood allows the practitioner to choose the best medical management and to adjust it throughout the life of the patient. The identification of risk factors of poor outcome is crucial, the issue being to prevent or minimize their impacts by appropriate interventions. However, knowledge on the natural course and long-term outcome of pediatric epilepsies is fragmentary for a lot of them for reasons that the authors discuss in this chapter. After reviewing general considerations on outcome for the epilepsies persisting throughout life, the authors will discuss the present state of knowledge on specific aspects concerning some pediatric epilepsy syndromes. These disorders have been chosen because they are representative of the wide range of potential outcomes that can be observed in adults.
Related JoVE Video
Negative BOLD response to interictal epileptic discharges in focal epilepsy.
Brain Topogr
PUBLISHED: 03-20-2013
Show Abstract
Hide Abstract
In EEG-fMRI studies, BOLD responses related to interictal epileptic discharges (IEDs) are most often the expected positive response (activation) but sometimes a surprising negative response (deactivation). The significance of deactivation in the region of IED generation is uncertain. The aim of this study was to determine if BOLD deactivation was caused by specific IED characteristics. Among focal epilepsy patients who underwent 3T EEG-fMRI from 2006 to 2011, those with negative BOLD having a maximum t-value in the IED generating region were selected. As controls, subjects with maximum activation in the IED generating region were selected. We established the relationship between the type of response (activation/deactivation) and (1) presence of slow wave in the IEDs, (2) lobe of epileptic focus, (3) occurrence as isolated events or bursts, (4) spatial extent of the EEG discharge. Fifteen patients with deactivation and 15 with activation were included. The IEDs were accompanied by a slow wave in 87 % of patients whose primary BOLD was a deactivation and only in 33 % of patients with activation. In the deactivation group, the epileptic focus was more frequently in the posterior quadrant and involved larger cortical areas, whereas in the activation group it was more frequently temporal. IEDs were more frequently of long duration in the deactivation group. The main factor responsible for focal deactivations is the presence of a slow wave, which is the likely electrographic correlate of prolonged inhibition. This adds a link to the relationship between electrophysiological and BOLD activities.
Related JoVE Video
Mutations in DEPDC5 cause familial focal epilepsy with variable foci.
Nat. Genet.
PUBLISHED: 03-06-2013
Show Abstract
Hide Abstract
The majority of epilepsies are focal in origin, with seizures emanating from one brain region. Although focal epilepsies often arise from structural brain lesions, many affected individuals have normal brain imaging. The etiology is unknown in the majority of individuals, although genetic factors are increasingly recognized. Autosomal dominant familial focal epilepsy with variable foci (FFEVF) is notable because family members have seizures originating from different cortical regions. Using exome sequencing, we detected DEPDC5 mutations in two affected families. We subsequently identified mutations in five of six additional published large families with FFEVF. Study of families with focal epilepsy that were too small for conventional clinical diagnosis with FFEVF identified DEPDC5 mutations in approximately 12% of families (10/82). This high frequency establishes DEPDC5 mutations as a common cause of familial focal epilepsies. Shared homology with G protein signaling molecules and localization in human neurons suggest a role of DEPDC5 in neuronal signal transduction.
Related JoVE Video
Occurrence of scalp-fast oscillations among patients with different spiking rate and their role as epileptogenicity marker.
Epilepsy Res.
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
We aim to analyze the fast oscillations in the scalp EEG of focal epilepsy patients with low-to-high rates of interictal epileptiform discharges (IEDs), in order to determine how this neurophysiological feature influences fast oscillation occurrence and their significance as markers of the seizure onset zone (SOZ).
Related JoVE Video
High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy.
Epilepsia
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Removal of areas generating high-frequency oscillations (HFOs) recorded from the intracerebral electroencephalography (iEEG) of patients with medically intractable epilepsy has been found to be correlated with improved surgical outcome. However, whether differences exist according to the type of epilepsy is largely unknown. We performed a comparative assessment of the impact of removing HFO-generating tissue on surgical outcome between temporal lobe epilepsy (TLE) and extratemporal lobe epilepsy (ETLE). We also assessed the relationship between the extent of surgical resection and surgical outcome.
Related JoVE Video
Widespread EEG changes precede focal seizures.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal), and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline). Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma) and high-frequency bands (ripples and fast ripples). At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development), but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures.
Related JoVE Video
Epileptic discharges affect the default mode network--FMRI and intracerebral EEG evidence.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Functional neuroimaging studies of epilepsy patients often show, at the time of epileptic activity, deactivation in default mode network (DMN) regions, which is hypothesized to reflect altered consciousness. We aimed to study the metabolic and electrophysiological correlates of these changes in the DMN regions. We studied six epilepsy patients that underwent scalp EEG-fMRI and later stereotaxic intracerebral EEG (SEEG) sampling regions of DMN (posterior cingulate cortex, Pre-cuneus, inferior parietal lobule, medial prefrontal cortex and dorsolateral frontal cortex) as well as non-DMN regions. SEEG recordings were subject to frequency analyses comparing sections with interictal epileptic discharges (IED) to IED-free baselines in the IED-generating region, DMN and non-DMN regions. EEG-fMRI and SEEG were obtained at rest. During IEDs, EEG-fMRI demonstrated deactivation in various DMN nodes in 5 of 6 patients, most frequently the pre-cuneus and inferior parietal lobule, and less frequently the other DMN nodes. SEEG analyses demonstrated decrease in gamma power (50-150 Hz), and increase in the power of lower frequencies (<30 Hz) at times of IEDs, in at least one DMN node in all patients. These changes were not apparent in the non-DMN regions. We demonstrate that, at the time of IEDs, DMN regions decrease their metabolic demand and undergo an EEG change consisting of decreased gamma and increased lower frequencies. These findings, specific to DMN regions, confirm in a pathological condition a direct relationship between DMN BOLD activity and EEG activity. They indicate that epileptic activity affects the DMN, and therefore may momentarily reduce the consciousness level and cognitive reserve.
Related JoVE Video
Changes preceding interictal epileptic EEG abnormalities: comparison between EEG/fMRI and intracerebral EEG.
Epilepsia
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
In simultaneous scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), blood oxygen level dependent (BOLD) changes occurring before the spike have been sometimes described but could not be explained. To characterize the origin of this prespike BOLD signal change, we looked for electrographic changes in stereo-EEG (SEEG) possibly preceding the scalp spike in patients that showed early BOLD response in EEG/fMRI.
Related JoVE Video
Interictal high frequency oscillations (HFOs) in patients with focal epilepsy and normal MRI.
Clin Neurophysiol
PUBLISHED: 03-20-2011
Show Abstract
Hide Abstract
We aim to analysis the relationship between HFOs-generating regions and the seizure onset zone (SOZ) in epileptic patients without a visible lesion on MRI.
Related JoVE Video
Automatic detection of fast oscillations (40-200 Hz) in scalp EEG recordings.
Clin Neurophysiol
PUBLISHED: 03-16-2011
Show Abstract
Hide Abstract
We aim to automatically detect fast oscillations (40-200 Hz) related to epilepsy on scalp EEG recordings.
Related JoVE Video
Functional connectivity in patients with idiopathic generalized epilepsy.
Epilepsia
PUBLISHED: 01-26-2011
Show Abstract
Hide Abstract
Idiopathic generalized epilepsy (IGE) is characterized by electroencephalography (EEG) recordings with generalized spike wave discharges (GSWDs) arising from normal background activity. Although GSWDs are the result of highly synchronized activity in the thalamocortical network, EEG without GSWDs is believed to represent normal brain activity. The aim of this study was to investigate whether thalamocortical interactions are altered even during GSWD-free EEG periods in patients with IGE.
Related JoVE Video
Using continuous electroencephalography in the management of delayed cerebral ischemia following subarachnoid hemorrhage.
Neurocrit Care
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Using clinical parameters to identify and monitor treatment response in patients with delayed cerebral ischemia (DCI) following subarachnoid hemorrhage is challenging. We sought to determine whether continuous electroencephalography (CEEG) aids the prediction of the clinical course and response to treatment of DCI.
Related JoVE Video
The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission.
Epilepsia
PUBLISHED: 11-10-2010
Show Abstract
Hide Abstract
? Focal cortical dysplasias (FCD) are localized regions of malformed cerebral cortex and are very frequently associated with epilepsy in both children and adults. A broad spectrum of histopathology has been included in the diagnosis of FCD. An ILAE task force proposes an international consensus classification system to better characterize specific clinicopathological FCD entities.
Related JoVE Video
Reproducibility of interictal EEG-fMRI results in patients with epilepsy.
Epilepsia
PUBLISHED: 11-03-2010
Show Abstract
Hide Abstract
Combined electroencephalography (EEG) and functional MRI (EEG-fMRI) can be useful in the evaluation of epilepsy patients. The reproducibility of EEG-fMRI findings needs to be established to consider it as a clinically valuable method. We addressed the intrasubject reproducibility of EEG-fMRI and the possible superiority of higher magnetic field strength in patients who were scanned twice.
Related JoVE Video
Absence seizures: individual patterns revealed by EEG-fMRI.
Epilepsia
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
Absences are characterized by an abrupt onset and end of generalized 3-4 Hz spike and wave discharges (GSWs), accompanied by unresponsiveness. Although previous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) studies showed that thalamus, default mode areas, and caudate nuclei are involved in absence seizures, the contribution of these regions throughout the ictal evolution of absences remains unclear. Furthermore, animal models provide evidence that absences are initiated by a cortical focus with a secondary involvement of the thalamus. The aim of this study was to investigate dynamic changes during absences.
Related JoVE Video
Ictal and interictal high frequency oscillations in patients with focal epilepsy.
Clin Neurophysiol
PUBLISHED: 06-27-2010
Show Abstract
Hide Abstract
High frequency oscillations (HFOs) can be recorded with depth electrodes in focal epilepsy patients. They occur during seizures and interictally and seem important in seizure genesis. We investigated whether interictal and ictal HFOs occur in the same regions and how they relate to epileptiform spikes.
Related JoVE Video
BOLD signal changes preceding negative responses in EEG-fMRI in patients with focal epilepsy.
Epilepsia
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
In simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), increased neuronal activity from epileptiform spikes commonly elicits positive blood oxygenation level-dependent (BOLD) responses. Negative responses are also occasionally seen and have not been explained. Recent studies describe BOLD signal changes before focal EEG spikes. We aimed to systematically study if the undershoot of a preceding positive response might explain the negative BOLD seen in the focus.
Related JoVE Video
Selective changes in inhibition as determinants for limited hyperexcitability in the insular cortex of epileptic rats.
Eur. J. Neurosci.
PUBLISHED: 05-24-2010
Show Abstract
Hide Abstract
The insular cortex (IC) is involved in the generalization of epileptic discharges in temporal lobe epilepsy (TLE), whereas seizures originating in the IC can mimic the epileptic phenotype seen in some patients with TLE. However, few studies have addressed the changes occurring in the IC in TLE animal models. Here, we analyzed the immunohistochemical and electrophysiological properties of IC networks in non-epileptic control and pilocarpine-treated epileptic rats. Neurons identified with a neuron-specific nuclear protein antibody showed similar counts in the two types of tissue but parvalbumin- and neuropeptide Y-positive interneurons were significantly decreased (parvalbumin, approximately -35%; neuropeptide Y, approximately -38%; P < 0.01) in the epileptic IC. Non-adapting neurons were seen more frequently in the epileptic IC during intracellular injection of depolarizing current pulses. In addition, single-shock electrical stimuli elicited network-driven epileptiform responses in 87% of epileptic and 22% of non-epileptic control neurons (P < 0.01) but spontaneous postsynaptic potentials had similar amplitude, duration and intervals of occurrence in the two groups. Finally, pharmacologically isolated, GABA(A) receptor-mediated inhibitory postsynaptic potentials had more negative reversal potential (P < 0.01) and higher peak conductance (P < 0.05) in epileptic tissue. These data reveal moderate increased network excitability in the IC of pilocarpine-treated epileptic rats. We propose that this limited degree of hyperexcitability originates from the loss of parvalbumin- and neuropeptide Y-positive interneurons that is compensated by an increased drive for GABA(A) receptor-mediated inhibition.
Related JoVE Video
Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients.
Brain
PUBLISHED: 04-19-2010
Show Abstract
Hide Abstract
Polymicrogyria is one of the most common malformations of cortical development and is associated with a variety of clinical sequelae including epilepsy, intellectual disability, motor dysfunction and speech disturbance. It has heterogeneous clinical manifestations and imaging patterns, yet large cohort data defining the clinical and imaging spectrum and the relative frequencies of each subtype are lacking. The aims of this study were to determine the types and relative frequencies of different polymicrogyria patterns, define the spectrum of their clinical and imaging features and assess for clinical/imaging correlations. We studied the imaging features of 328 patients referred from six centres, with detailed clinical data available for 183 patients. The ascertainment base was wide, including referral from paediatricians, geneticists and neurologists. The main patterns of polymicrogyria were perisylvian (61%), generalized (13%), frontal (5%) and parasagittal parieto-occipital (3%), and in 11% there was associated periventricular grey matter heterotopia. Each of the above patterns was further divided into subtypes based on distinguishing imaging characteristics. The remaining 7% were comprised of a number of rare patterns, many not described previously. The most common clinical sequelae were epileptic seizures (78%), global developmental delay (70%), spasticity (51%) and microcephaly (50%). Many patients presented with neurological or developmental abnormalities prior to the onset of epilepsy. Patients with more extensive patterns of polymicrogyria presented at an earlier age and with more severe sequelae than those with restricted or unilateral forms. The median age at presentation for the entire cohort was 4 months with 38% presenting in either the antenatal or neonatal periods. There were no significant differences between the prevalence of epilepsy for each polymicrogyria pattern, however patients with generalized and bilateral forms had a lower age at seizure onset. There was significant skewing towards males with a ratio of 3:2. This study expands our understanding of the spectrum of clinical and imaging features of polymicrogyria. Progression from describing imaging patterns to defining anatomoclinical syndromes will improve the accuracy of prognostic counselling and will aid identification of the aetiologies of polymicrogyria, including genetic causes.
Related JoVE Video
High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery.
Ann. Neurol.
PUBLISHED: 03-13-2010
Show Abstract
Hide Abstract
High-frequency oscillations (HFOs) in the intracerebral electroencephalogram (EEG) have been linked to the seizure onset zone (SOZ). We investigated whether HFOs can delineate epileptogenic areas even outside the SOZ by correlating the resection of HFO-generating areas with surgical outcome.
Related JoVE Video
Value of electrical stimulation and high frequency oscillations (80-500 Hz) in identifying epileptogenic areas during intracranial EEG recordings.
Epilepsia
PUBLISHED: 10-20-2009
Show Abstract
Hide Abstract
Electrical stimulation (ES) is used during intracranial electroencephalography (EEG) investigations to delineate epileptogenic areas and seizure-onset zones (SOZs) by provoking afterdischarges (ADs) or patients typical seizure. High frequency oscillations (HFOs--ripples, 80-250 Hz; fast ripples, 250-500 Hz) are linked to seizure onset. This study investigates whether interictal HFOs are more frequent in areas with a low threshold to provoke ADs or seizures.
Related JoVE Video
De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy.
Ann. Neurol.
PUBLISHED: 06-27-2009
Show Abstract
Hide Abstract
We sequenced genes coding for components of the SNARE complex (STX1A, VAMP2, SNAP25) and their regulatory proteins (STXBP1/Munc18-1, SYT1), which are essential for neurotransmission, in 95 patients with idiopathic mental retardation. We identified de novo mutations in STXBP1 (nonsense, p.R388X; splicing, c.169+1G>A) in two patients with severe mental retardation and nonsyndromic epilepsy. Reverse transcriptase polymerase chain reaction and sequencing showed that the splicing mutation creates a stop codon downstream of exon-3. No de novo or deleterious mutations in STXBP1 were found in 190 control subjects, or in 142 autistic patients. These results suggest that STXBP1 disruption is associated with autosomal dominant mental retardation and nonsyndromic epilepsy.
Related JoVE Video
Structures involved at the time of temporal lobe spikes revealed by interindividual group analysis of EEG/fMRI data.
Epilepsia
PUBLISHED: 06-22-2009
Show Abstract
Hide Abstract
We measured metabolic changes associated with temporal lobe (TL) spikes using combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). We selected 18 patients with temporal lobe epilepsy (TLE) who underwent a 2-h simultaneous EEG-fMRI and had unilateral or bilateral independent TL spikes for interindividual group analysis, in order to identify consistent blood oxygenation level dependent (BOLD) responses to TL spikes.
Related JoVE Video
Noninvasive dynamic imaging of seizures in epileptic patients.
Hum Brain Mapp
PUBLISHED: 06-10-2009
Show Abstract
Hide Abstract
Epileptic seizures are due to abnormal synchronized neuronal discharges. Techniques measuring electrical changes are commonly used to analyze seizures. Neuronal activity can be also defined by concomitant hemodynamic and metabolic changes. Simultaneous electroencephalogram (EEG)-functional MRI (fMRI) measures noninvasively with a high-spatial resolution BOLD changes during seizures in the whole brain. Until now, only a static image representing the whole seizure was provided. We report in 10 focal epilepsy patients a new approach to dynamic imaging of seizures including the BOLD time course of seizures and the identification of brain structures involved in seizure onset and discharge propagation. The first activation was observed in agreement with the expected location of the focus based on clinical and EEG data (three intracranial recordings), thus providing validity to this approach. The BOLD signal preceded ictal EEG changes in two cases. EEG-fMRI may detect changes in smaller and deeper structures than scalp EEG, which can only record activity form superficial cortical areas. This method allowed us to demonstrate that seizure onset zone was limited to one structure, thus supporting the concept of epileptic focus, but that a complex neuronal network was involved during propagation. Deactivations were also found during seizures, usually appearing after the first activation in areas close or distant to the activated regions. Deactivations may correspond to actively inhibited regions or to functional disconnection from normally active regions. This new noninvasive approach should open the study of seizure generation and propagation mechanisms in the whole brain to groups of patients with focal epilepsies.
Related JoVE Video
Effect of sleep stage on interictal high-frequency oscillations recorded from depth macroelectrodes in patients with focal epilepsy.
Epilepsia
PUBLISHED: 05-13-2009
Show Abstract
Hide Abstract
To investigate the effect of sleep stage on the properties of high-frequency oscillations (HFOs) recorded from depth macroelectrodes in patients with focal epilepsy.
Related JoVE Video
Coexistence of symptomatic focal and absence seizures: video-EEG and EEG-fMRI evidence of overlapping but independent epileptogenic networks.
Epilepsia
PUBLISHED: 04-27-2009
Show Abstract
Hide Abstract
The distinction between typical absences and hypomotor seizures in patients having frontal lesions is difficult. In focal epilepsy, generalized-like interictal discharges can reflect either a coexistent generalized epileptic trait or a secondary bilateral synchrony. Using combined measures of the EEG and blood oxygenation level dependent (BOLD) activity, we studied a 50-year-old patient with both absence-like and symptomatic focal motor seizures. Focal activity induced activation in the lesional area and deactivation in the contralateral central cortex. Generalized spike-and-wave discharges (GSWDs) resulted also in perilesional activation, and multifocal symmetrical cortical and thalamic activations, and deactivation in associative cortical areas. Although the central cortex was involved during both types of epileptic activity, electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) revealed distinct neuronal networks at the time of the focal or generalized discharges, allowing a clear-cut differentiation of the generators. Whether the patient had distinct epileptic syndromes or distinct electrographic patterns from the lesional trigger remains debatable.
Related JoVE Video
EEG spectral changes underlying BOLD responses contralateral to spikes in patients with focal epilepsy.
Epilepsia
PUBLISHED: 04-06-2009
Show Abstract
Hide Abstract
Simultaneous electroencephalogram and functional magnetic resonance imaging (EEG-fMRI) in patients with focal epilepsy and unilateral spikes often shows positive blood oxygenation level-dependent (BOLD) responses (activations), not only ipsilateral but also contralateral to the spikes. We aimed to investigate whether minimal EEG changes could underlie these contralateral BOLD responses by using EEG spectral analysis.
Related JoVE Video
High frequency oscillations (80-500 Hz) in the preictal period in patients with focal seizures.
Epilepsia
PUBLISHED: 03-27-2009
Show Abstract
Hide Abstract
Intracranial depth macroelectrode recordings from patients with focal seizures demonstrate interictal and ictal high frequency oscillations (HFOs, 80-500 Hz). These HFOs are more frequent in the seizure-onset zone (SOZ) and reported to be linked to seizure genesis. We evaluated whether HFO activity changes in a systematic way during the preictal period.
Related JoVE Video
High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type.
Brain
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
High frequency oscillations (HFOs) called ripples (80-250 Hz) and fast ripples (FR, 250-500 Hz) can be recorded from intracerebral EEG macroelectrodes in patients with intractable epilepsy. HFOs occur predominantly in the seizure onset zone (SOZ) but their relationship to the underlying pathology is unknown. It was the aim of this study to investigate whether HFOs are specific to the SOZ or result from pathologically changed tissue, whether or not it is epileptogenic. Patients with different lesion types, namely mesial temporal atrophy (MTA), focal cortical dysplasia (FCD) and nodular heterotopias (NH) were investigated. Intracranial EEG was recorded from depth macroelectrodes with a sampling rate of 2000 Hz. Ripples (80-250 Hz) and Fast Ripples (250-500 Hz) were visually marked in 12 patients: five with MTA, four with FCD and three with NH. Rates of events were statistically compared in channels in four areas: lesional SOZ, non-lesional SOZ, lesional non-SOZ and non-lesional non-SOZ. HFO rates were clearly more linked to the SOZ than to the lesion. They were highest in areas in which lesion and SOZ overlap, but in patients with a SOZ outside the lesion, such as in NHs, HFO rates were clearly higher in the non-lesional SOZ than in the inactive lesions. No specific HFO pattern could be identified for the different lesion types. The findings suggest that HFOs represent a marker for SOZ areas independent of the underlying pathology and that pathologic tissue changes alone do not lead to high rates of HFOs.
Related JoVE Video
Long-term seizure outcome after corpus callosotomy: a retrospective analysis of 95 patients.
J. Neurosurg.
PUBLISHED: 02-28-2009
Show Abstract
Hide Abstract
The authors report long-term follow-up seizure outcome in patients who underwent corpus callosotomy during the period 1981-2001 at the Montreal Neurological Institute.
Related JoVE Video
High frequency oscillations and seizure frequency in patients with focal epilepsy.
Epilepsy Res.
PUBLISHED: 01-18-2009
Show Abstract
Hide Abstract
High frequency oscillations (HFOs) have been associated with epileptogenicity. In rats, the extent of HFOs (>200 Hz) is correlated with seizure frequency. We studied whether the same applies to patients with focal epilepsy. Thirty-nine patients with intracerebral EEG sampled at 2000 Hz were studied for interictal ripples (80-250 Hz), fast ripples (FR, 250-500 Hz) and spikes. Seizure frequency before implantation was compared to numbers of channels with HFOs (>1/min). Analyses were repeated for HFO rates of >5, >10 and >20. Separate analyses were done for 25 patients with temporal lobe epilepsy only and for a selection of similar unilateral temporal channels in 12 patients. No linear correlation or trend was found relating the number of channels with HFOs and seizure frequency. There was a linear positive correlation between the number of channels with more than 20 FRs/min and seizure frequency. The hypothesis that the more tissue generating HFOs, the higher the seizure frequency, was not confirmed, though there might be a correlation for high FR rates.
Related JoVE Video
Dynamic cardiac PET imaging: extraction of time-activity curves using ICA and a generalized Gaussian distribution model.
IEEE Trans Biomed Eng
Show Abstract
Hide Abstract
Kinetic modeling of metabolic and physiologic cardiac processes in small animals requires an input function (IF) and a tissue time-activity curves (TACs). In this paper, we present a mathematical method based on independent component analysis (ICA) to extract the IF and the myocardiums TACs directly from dynamic positron emission tomography (PET) images. The method assumes a super-Gaussian distribution model for the blood activity, and a sub-Gaussian distribution model for the tissue activity. Our appreach was applied on 22 PET measurement sets of small animals, which were obtained from the three most frequently used cardiac radiotracers, namely: desoxy-fluoro-glucose ((18)F-FDG), [(13)N]-ammonia, and [(11)C]-acetate. Our study was extended to PET human measurements obtained with the Rubidium-82 ((82) Rb) radiotracer. The resolved mathematical IF values compare favorably to those derived from curves extracted from regions of interest (ROI), suggesting that the procedure presents a reliable alternative to serial blood sampling for small-animal cardiac PET studies.
Related JoVE Video
Widespread epileptic networks in focal epilepsies: EEG-fMRI study.
Epilepsia
Show Abstract
Hide Abstract
To assess the extent of brain involvement during focal epileptic activity, we studied patterns of cortical and subcortical metabolic changes coinciding with interictal epileptic discharges (IEDs) using group analysis of simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) scans in patients with focal epilepsy.
Related JoVE Video
Patterns of altered functional connectivity in mesial temporal lobe epilepsy.
Epilepsia
Show Abstract
Hide Abstract
In mesial temporal lobe epilepsy (MTLE) the epileptogenic area is confined to the mesial temporal lobe, but other cortical and subcortical areas are also affected and cognitive and psychiatric impairments are usually documented. Functional connectivity methods are based on the correlation of the blood oxygen level dependent (BOLD) signal between brain regions, which exhibit consistent and reproducible functional networks from resting state data. The aim of this study is to compare functional connectivity of patients with MTLE during the interictal period with healthy subjects. We hypothesize that patients show reduced functional connectivity compared to controls, the interest being to determine which regions show this reduction.
Related JoVE Video
Contribution of EEG/fMRI to the definition of the epileptic focus.
Neurology
Show Abstract
Hide Abstract
To evaluate the clinical relevance of EEG/fMRI in patients with focal epilepsy, by assessing the information it adds to the scalp EEG in the definition of the epileptic focus.
Related JoVE Video
Continuous high-frequency activity in mesial temporal lobe structures.
Epilepsia
Show Abstract
Hide Abstract
Purpose:? Many recent studies have reported the importance of high-frequency oscillations (HFOs) in the intracerebral electroencephalography (EEG) of patients with epilepsy. These HFOs have been defined as events that stand out from the background. We have noticed that this background often consists itself of high-frequency rhythmic activity. The purpose of this study is to perform a first evaluation of the characteristics of high-frequency continuous or semicontinuous background activity. Methods:? Because the continuous high-frequency pattern was noted mainly in mesial temporal structures, we reviewed the EEG studies from these structures in 24 unselected patients with electrodes implanted in these regions. Sections of background away from interictal spikes were marked visually during periods of slow-wave sleep and wakefulness. They were then high-passed filtered at 80?Hz and categorized as having high-frequency rhythmic activity in one of three patterns: continuous/semicontinuous, irregular, sporadic. Wavelet entropy, which measures the degree of rhythmicity of a signal, was calculated for the marked background sections. Key Findings:? Ninety-six bipolar channels were analyzed. The continuous/semicontinuous pattern was found frequently (29/96 channels during wake and 34/96 during sleep). The different patterns were consistent between sleep and wakefulness. The continuous/semicontinuous pattern was found significantly more often in the hippocampus than in the parahippocampal gyrus and was rarely found in the amygdala. The types of pattern were not influenced by whether a channel was within the seizure-onset zone, or whether it was a lesional channel. The continuous/semicontinuous pattern was associated with a higher frequency of spikes and with high rates of ripples and fast ripples. Significance:? It appears that high-frequency activity (above 80?Hz) does not appear only in the form of brief paroxysmal events but also in the form of continuous rhythmic activity or very long bursts. In this study limited to mesial temporal structures, we found a clear anatomic preference for the hippocampus. Although associated with spikes and with distinct HFOs, this pattern was not clearly associated with the seizure-onset zone. Future studies will need to evaluate systematically the presence of this pattern, as it may have a pathophysiologic significance and it will also have an important influence on the very definition of HFOs.
Related JoVE Video
Comprehension of concrete and abstract words in patients with selective anterior temporal lobe resection and in patients with selective amygdalo-hippocampectomy.
Neuropsychologia
Show Abstract
Hide Abstract
The role of the anterior temporal lobe (ATL) in semantic memory is now firmly established. There is still controversy, however, regarding the specific role of this region in processing various types of concepts. There have been reports of patients suffering from semantic dementia (SD), a neurodegenerative condition in which the ATL is damaged bilaterally, who present with greater semantic impairment for concrete concepts than for abstract concepts, an effect known as reversal of the concreteness effect. This effect has previously been interpreted as reflecting degraded visual-perceptual features of objects due to damage to the inferior temporal lobes such as is observed in SD. Temporal lobe atrophy in SD, however, is bilateral even if it usually predominates to the left ATL, and it has been found to extend beyond the ATL, throughout the temporal lobes including medial and posterior temporal lobe regions. The question therefore remains whether greater impairment for concrete concepts results from damage to the ATL or from damage to the visual association cortex, and if unilateral damage can produce such a deficit. The aim of the present study was to investigate the processing of concrete and abstract words in rare patients who underwent a selective ATL surgical resection, and to compare their performance with that of patients with selective medial temporal lobe damage sparing the ATL region. Seven patients with a selective unilateral anterior temporal resection (ATL), 15 patients with a selective unilateral amygdalo-hippocampectomy (SeAH), and 15 healthy age- and education-matched controls underwent detailed neuropsychological assessment and carried out a semantic similarity judgment task evaluating their comprehension of concrete and abstract words. Results showed that both ATL and SeAH groups were significantly impaired on the semantic task relative to the control group. Within the patient groups, however, comprehension of concrete words was significantly more impaired than that of abstract words in the ATL group, while comprehension of abstract and concrete words was equally affected in the SeAH group. Results of this study suggest that the ATL region may play a critical role in processing concrete concepts, and that the reversal of the concreteness effect observed in ATL patients may result from damage to a categorical organization underlying the representation of concrete concepts.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.